20 research outputs found

    Homozygosity for a novel ABCA4 founder splicing mutation is associated with progressive and severe Stargardt-like disease

    Get PDF
    PURPOSE. To clinically characterize and genetically analyze members of six families who reside in the same village and manifest a rare form of retinal degeneration. METHODS. Ophthalmic evaluation included a full clinical examination, perimetry, color vision testing, and electroretinography. Genomic DNA was screened for ABCA4 mutations with the use of microarray analysis and direct sequencing. RNA analysis was performed with RT-PCR and sequencing. RESULTS. The authors recruited 15 patients with a unique retinal disease who are members of six highly consanguineous ArabMuslim families from a single village. During early stages of disease, funduscopic and angiographic findings as well as retinal function resemble those of Stargardt disease. However, later in life, severe, widespread cone-rod degeneration ensues. Marked progressive involvement of the retinal periphery distinguishes this phenotype from classic Stargardt disease. Genetic analysis of ABCA4 revealed two novel deletions, p.Cys1150del and c.4254-15del23. One patient, who was a compound heterozygote, manifested typical Stargardt disease. The remaining 14 patients were homozygote for the c.4254-15del23 intronic deletion and had the progressive form of disease. We identified an identical ABCA4 haplotype in all alleles carrying this mutation, indicating a founder mutation. Detailed RT-PCR analysis in normal retina and lymphoblastoid cells revealed expression of the full-length ABCA4 transcript and three novel transcripts produced by alternative splicing. The full-length ABCA4 transcript, however, could not be detected in lymphoblastoid cells of affected homozygote patients. CONCLUSIONS. These results expand the genotype-phenotype correlation of ABCA4, showing that homozygosity for the novel c.4254-15del23 splicing mutation is associated with a severe progressive form of disease. (Invest Ophthalmol Vis Sci

    Visual acuity improvement in children with albinism beyond the first decade of life.

    No full text
    PurposeTo determine if visual maturation continues beyond the first decade of life in children with albinism and whether this is related to albinism type, presence of nystagmus, eye muscle surgery or refractive errors.DesignCase series based on retrospective study of children with confirmed genetic diagnosis of albinism.MethodsClinical data were obtained from medical files of children examined during school years, including albinism type, visual acuity, eye muscle surgery, nystagmus, and others on different visits (Visit 1: ages 7-9; Visit 2: ages: 10-12; Visit 3: ages 13-16; Visit 4: ages >16).ResultsSeventy-five children with albinism were included in the study. Patients were divided into different groups according to the albinism type including OCA1A: 17; OCA1B: 28; OCA2: 26; HPS: 3; OCA4: 1. Follow-up ranged from 3-13 years. Progressive visual acuity improvement was seen in all three main groups. T-test paired samples showed a statistically significant improvement when comparing vision from Visit 1 and Visit 3 in both OCA1A and OCA2 groups, with a mean vision improvement of 2 lines. There was no correlation between visual improvement and refractive error, eye muscle surgery or nystagmus.ConclusionAn improved visual performance was seen in a large percentage of children with albinism during the second decade of life. The reason for this late improvement in vision is not clear but may be related to late foveal maturation or improvement in nystagmus with time. This information is useful for clinicians of these patients and when counseling parents

    A schematic representation of the human and expressed sequence tags (ESTs) initiating from intronic regions

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "A novel de novo mutation in an Ashkenazi-Jewish family with aniridia"</p><p></p><p>Molecular Vision 2008;14():142-145.</p><p>Published online 28 Jan 2008</p><p>PMCID:PMC2255027.</p><p></p> The upper panel illustrates the structure of the human . Only the genomic region containing the coding exons is depicted with arrows indicating the location of the initiation codons. The regions covered by each of the eight spliced ESTs containing intronic sequences are depicted below. Spliced out regions are illustrated as a thin line

    MRI evidence of white matter damage in a mouse model of Nijmegen breakage syndrome

    No full text
    Nijmegen breakage syndrome (NBS) is a genomic instability disease caused by hypomorphic mutations in the NBS1 gene encoding the Nbs1 (nibrin) protein. Nbs1 is a component of the Mre11/Rad50/Nbs1 (MRN) complex that acts as a sensor of double strand breaks (DSBs) in the DNA and is critical for proper activation of the broad cellular response to DSBs. Conditional disruption of the murine ortholog of NBS1, Nbn, in the CNS of mice was previously reported to cause microcephaly, severe cerebellar atrophy and ataxia. In this study we used MRI to study the brain morphology and organization of Nbn deleted mice. Using conventional T2-weighted magnetic resonance, we found that the brains of the mutant mice (Nbs1-CNS-del) were significantly smaller than those of the wild-type animals, with marked mal-development of the cerebellum. Region of interest analysis of the T2 maps revealed significant T2 increase in the areas of white matter (corpus callosum, internal capsule and midbrain), with minor changes, if any, in gray matter. Diffusion tensor imaging (DTI) data confirmed that fractional anisotropy values were significantly reduced in these areas, mainly due to increased radial diffusivity (water diffusion perpendicular to neuronal fibers). Biochemical analysis showed low and dispersed staining for MBP and GalC in Nbs1-CNS-del brains, indicating defects in myelin formation and oligodendrocyte development. Myelin index and protein levels were significantly reduced in these brains. Our results point to a novel function of Nbs1 in the development and organization of the white matter

    Regeneration of injured articular cartilage using the recombinant human amelogenin protein

    No full text
    Aims: Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model. Methods: A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence. Results: A total of 12 weeks after treatment, 0.5 μg/μl rHAM+ brought about significant repair of the subchondral bone and cartilage. Increased expression of proteoglycan and type II collagen and decreased expression of type I collagen were revealed at the surface of the defect, and an elevated level of type X collagen at the newly developed tide mark region. Conversely, the control group showed osteoarthritic alterations. Recruitment of cells expressing the mesenchymal stem cell (MSC) markers CD105 and STRO-1, from adjacent bone marrow toward the OCI, was noted four days after treatment. Conclusion: We found that 0.5 μg/μl rHAM+ induced in vivo healing of injured articular cartilage and subchondral bone in a rat model, preventing the destructive post-traumatic osteoarthritic changes seen in control OCIs, through paracrine recruitment of cells a few days after treatment. Cite this article: Bone Joint Res 2023;12(10):615–623

    Nonsyndromic Retinitis Pigmentosa in the Ashkenazi Jewish Population: Genetic and Clinical Aspects

    No full text
    To analyze the genetic and clinical findings in retinitis pigmentosa (RP) patients of Ashkenazi Jewish (AJ) descent, aiming to identify genotype-phenotype correlations. Cohort study. Retinitis pigmentosa patients from 230 families of AJ origin. Sanger sequencing was performed to detect specific founder mutations known to be prevalent in the AJ population. Ophthalmologic analysis included a comprehensive clinical examination, visual acuity (VA), visual fields, electroretinography, color vision testing, and retinal imaging by OCT, pseudocolor, and autofluorescence fundus photography. Inheritance pattern and causative mutation; retinal function as assessed by VA, visual fields, and electroretinography results; and retinal structural changes observed on clinical funduscopy as well as by pseudocolor, autofluorescence, and OCT imaging. The causative mutation was identified in 37% of families. The most prevalent RP-causing mutations are the Alu insertion (c.1297_8ins353, p.K433Rins31*) in the male germ cell-associated kinase (MAK) gene (39% of families with a known genetic cause for RP) and c.124A>G, p.K42E in dehydrodolichol diphosphate synthase (DHDDS) (33%). Additionally, disease-causing mutations were identified in 11 other genes. Analysis of clinical parameters of patients with mutations in the 2 most common RP-causing genes revealed that MAK patients had better VA and visual fields at relatively older ages in comparison with DHDDS patients. Funduscopic findings of DHDDS patients matched those of MAK patients who were 20 to 30 years older. Patients with DHDDS mutations were referred for electrophysiologic evaluation at earlier ages, and their cone responses became nondetectable at a much younger age than MAK patients. Our AJ cohort of RP patients is the largest reported to date and showed a substantial difference in the genetic causes of RP compared with cohorts of other populations, mainly a high rate of autosomal recessive inheritance and a unique composition of causative genes. The most common RP-causing genes in our cohort, MAK and DHDDS, were not described as major causative genes in other populations. The clinical data show that in general, patients with biallelic MAK mutations had a later age of onset and a milder retinal phenotype compared with patients with biallelic DHDDS mutations
    corecore