8 research outputs found

    Charged C-metric with conformally coupled scalar field

    Full text link
    We present a generalisation of the charged C-metric conformally coupled with a scalar field in the presence of a cosmological constant. The solution is asymptotically flat or a constant curvature spacetime. The spacetime metric has the geometry of a usual charged C-metric with cosmological constant, where the mass and charge are equal. When the cosmological constant is absent it is found that the scalar field only blows up at the angular pole of the event horizon. The presence of the cosmological constant can generically render the scalar field regular where the metric is regular, pushing the singularity beyond the event horizon. For certain cases of enhanced acceleration with a negative cosmological constant, the conical singularity disappears all together and the scalar field is everywhere regular. The black hole is then rather a black string with its event horizon extending all the way to asymptotic infinity and providing itself the necessary acceleration.Comment: regular article, no figures, typos corrected, to appear in Classical and Quantum Gravit

    Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum

    Full text link
    Static asymptotically Lifshitz wormholes and black holes in vacuum are shown to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by requiring that all but one of their n maximally symmetric vacua are AdS of radius l and degenerate. The wormhole geometry is regular everywhere and connects two Lifshitz spacetimes with a nontrivial geometry at the boundary. The dynamical exponent z is determined by the quotient of the curvature radii of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L corresponds to the curvature radius of the nondegenerate vacuum. Light signals are able to connect both asymptotic regions in finite time, and the gravitational field pulls towards a fixed surface located at some arbitrary proper distance to the neck. The asymptotically Lifshitz black hole possesses the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z pi l). Further analytic solutions, including pure Lifshitz spacetimes with a nontrivial geometry at the spacelike boundary, and wormholes that interpolate between asymptotically Lifshitz spacetimes with different dynamical exponents are also found.Comment: 19 pages, 1 figur

    Lifshitz black holes in Brans-Dicke theory

    Get PDF
    We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(3)n(\ge 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent zz is determined in terms of the Brans-Dicke parameter ω\omega and nn. Asymptotic Lifshitz condition at infinity requires z>1z>1, which corresponds to (n1)/(n2)ω<n/(n1)-(n-1)/(n-2) \le \omega < -n/(n-1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0<z2(n2)/(n3)0<z \le 2(n-2)/(n-3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented.Comment: 32 pages, no figure. v2: revised version. Section 3.1 and Appendix B improved. The argument in Appendix A clarified. v3: References added. v4: analysis on the black hole thermodynamical properties corrected. Final version to appear in JHE
    corecore