1,213 research outputs found

    The refined 2.3 Å crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor

    Get PDF
    AbstractThe stoichiometric complex formed between human leukocyte elastase and a synthetic MeO-Suc-Ala-Ala-Pro-Val chloromethyl ketone inhibitor was co-crystallized and its X-ray structure determined, using Patterson search methods. Its structure has been crystallographically refined to a final R value of 0.145 (8.0 and 2.3 Å). The enzyme structure is very similar to that recently observed in a complex formed with the ovomucoid third domain from turkey [(1986) EMBO J. 5,2453–2458]. The rms deviation of all α-carbon atoms is 0.32 Å. The peptidic inhibitor is bound in a similar overall conformation as the ovomucoid binding segment. Covalent bonds are formed between Val-P1 of the inhibitor and His-57 NE2 and Ser-195 OG of the enzyme. The carbonyl carbon is tetrahedrally deformed to a hemiketal. The valine side chain is arranged in the S1 pocket in the g− conformation

    Experimental Realization of Entanglement Concentration and A Quantum Repeater

    Full text link
    We report an experimental realization of entanglement concentration using two polarization-entangled photon pairs produced by pulsed parametric down-conversion. In the meantime, our setup also provides a proof-in-principle demonstration of a quantum repeater. The quality of our procedure is verified by observing a violation of Bell's inequality by more than 5 standard deviations. The high experimental accuracy achieved in the experiment implies that the requirement of tolerable error rate in multi-stage realization of quantum repeaters can be fulfilled, hence providing a practical toolbox for quantum communication over large distances.Comment: 15 pages, 4 figures, submitte

    A New Concept to Reveal Protein Dynamics Based on Energy Dissipation

    Get PDF
    Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine

    Experimental demonstration of a non-destructive controlled-NOT quantum gate for two independent photon-qubits

    Full text link
    Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum information processing. However, the photons, one of the best candidates for qubits, suffer from the lack of strong nonlinear coupling required for quantum logic operations. Here we show how this drawback can be overcome by reporting a proof-of-principle experimental demonstration of a non-destructive controlled-NOT (CNOT) gate for two independent photons using only linear optical elements in conjunction with single-photon sources and conditional dynamics. Moreover, we have exploited the CNOT gate to discriminate all the four Bell-states in a teleportation experiment.Comment: 4 pages, 4 figures, submitte

    Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation

    Full text link
    We report an experimental realization of both optimal asymmetric cloning and telecloning of single photons by making use of partial teleportation of an unknown state. In the experiment, we demonstrate that, conditioned on the success of partial teleportation of single photons, not only the optimal asymmetric cloning can be accomplished, but also one of two outputs can be transfered to a distant location, realizing the telecloning. The experimental results represent a novel way to achieve the quantum cloning and may have potential applications in the context of quantum communication.Comment: 4 pages and 4 figure
    corecore