4,452 research outputs found

    Dynamics of Islamic Unity Education Institute

    Get PDF
    The purpose of this study was to find out the history and dynamics of Persis educational institutions. The research method uses library research with data sources in books form and scientific journals related to the dynamics of educational institutions, and data analysis techniques use content analysis. The study results revealed that Persis birth began with a Tadarusan formation (Islamic religious study) group in Bandung city led by H. Zamzam and H. Muhammad Yunus. Persis has been led by several figures who have their own characteristics of thought, including KH. Zamzam as Persis founder. Ahmad Hasan is the main teacher and founder of Persis. Mohammad Natsir is a political scholar. KH. E. Abdurrahman was a great scholar and a humble legal expert. Persis gives great attention to the education field. In this education field, Persis has established educational institutions ranging from early childhood or kindergarten to tertiary institutions, both in madrasas form, schools, and Islamic boarding schools. Apart from that, Persis also organizes courses and discussion groups. So it is necessary to continue to maintain this spirit, especially in eradicating stupidity context, backwardness, superstition, heresy, and superstition, as well as Indonesian people colonization by carrying out enlightenment among Muslims

    Synpolydactyly and HOXD13 polyalanine repeat: addition of 2 alanine residues is without clinical consequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type II syndactyly or synpolydactyly (SPD) is clinically very heterogeneous, and genetically three distinct SPD conditions are known and have been designated as SPD1, SPD2 and SPD3, respectively. SPD1 type is associated with expansion mutations in <it>HOXD13</it>, resulting in an addition of ≄ 7 alanine residues to the polyalanine repeat. It has been suggested that expansions ≀ 6 alanine residues go without medical attention, as no such expansion has ever been reported with the SPD1 phenotype.</p> <p>Methods</p> <p>We describe a large Pakistani and an Indian family with SPD. We perform detailed clinical and molecular analyses to identify the genetic basis of this malformation.</p> <p>Results</p> <p>We have identified four distinct clinical categories for the SPD1 phenotype observed in the affected subjects in both families. Next, we show that a milder foot phenotype, previously described as a separate entity, is in fact a part of the SPD1 phenotypic spectrum. Then, we demonstrate that the phenotype in both families segregates with an identical expansion mutation of 21 bp in <it>HOXD13</it>. Finally, we show that the HOXD13 polyalanine repeat is polymorphic, and the expansion of 2 alanine residues, evident in unaffected subjects of both families, is without clinical consequences.</p> <p>Conclusion</p> <p>It is the first molecular evidence supporting the hypothesis that expansion of ≀ 6 alanine residues in the HOXD13 polyalanine repeat is not associated with the SPD1 phenotype.</p

    Synthesis of a Graphene-Encapsulated Fe 3 C/Fe Catalyst Supported on Sporopollenin Exine Capsules and Its Use for the Reverse Water–Gas Shift Reaction

    Get PDF
    Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer–Emmett–Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C═C to C–C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water–gas shift reaction at high temperatures (>600 °C)

    Building digital twins of the human immune system: toward a roadmap

    Get PDF
    Digital twins, customized simulation models pioneered in industry, are beginning to be deployed in medicine and healthcare, with some major successes, for instance in cardiovascular diagnostics and in insulin pump control. Personalized computational models are also assisting in applications ranging from drug development to treatment optimization. More advanced medical digital twins will be essential to making precision medicine a reality. Because the immune system plays an important role in such a wide range of diseases and health conditions, from fighting pathogens to autoimmune disorders, digital twins of the immune system will have an especially high impact. However, their development presents major challenges, stemming from the inherent complexity of the immune system and the difficulty of measuring many aspects of a patient’s immune state in vivo. This perspective outlines a roadmap for meeting these challenges and building a prototype of an immune digital twin. It is structured as a four-stage process that proceeds from a specification of a concrete use case to model constructions, personalization, and continued improvement

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 ÎŒm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation
    • 

    corecore