56 research outputs found

    Investigation of the Performance of V-cut Turbines for Stirring Shear-thinning Fluids in a Cylindrical Vessel

    Get PDF
    The impeller design is the most crucial parameter to enhance the performance of stirred tanks. The cut in the impeller blade is a new technique to save the energy of impellers in mixing vessels without increasing the mixing time or reducing the product quality. In this paper, the new technique of cut is applied for a disc turbine rotating in an unbaffled cylindrical tank. Effects of the V-cut shape are highlighted. Non-Newtonian shear-thinning fluids are considered for the three flow regimes (laminar, transient, and turbulent). Effects of the number of blades on the flow patterns, pumping rate (Nq) and power consumption (Np) are explored. From the obtained results, a recirculation loop of flow is observed at the tip of each blade for impellers with less than three blades. These recirculation loops disappear with the increased number of blades. Under laminar flow conditions, the obtained results also revealed a decrease in power consumption and an increase in the discharge flow rate with the rise of Reynolds number. However, almost any changes were observed for these parameters (Np and Nq) under turbulent flow conditions

    Optimization of the Operating and Design Conditions to Reduce the Power Consumption in a Vessel Stirred by a Paddle Impeller

    Get PDF
    Design of the impeller blade is a determining factor in power consumption and mixing quality, which determines consequently the cost of the mixing operation. This study explores the flow patterns and the power required for stirring a Newtonian fluid by paddle impellers. Investigations are carried out via three dimensional (3D) numerical simulations. Effects of the blade curvature, blade diameter, blade number and Reynolds number are analyzed. The curved blade is found to be more efficient to reduce the power consumption, compared with the straight blade. A new correlation is proposed for predicting the power required with two-curved-bladed impellers. The straight and very large blade creates a dead zone in the space between the blade tip and the vertical wall of vessel. This issue may be overcome by the curved blade, which increases consequently the well-mixed region size. A wider well-mixed region may be obtained with the larger curved blade, but with an additional energy cost

    Agitation of Complex Fluids in Cylindrical Vessels by Newly Designed Anchor Impellers: Bingham-Papanastasiou Fluids as a Case Study

    Get PDF
    The fluid flows and power consumption in a vessel stirred by anchor impellers are investigated in this paper. The case of rheologically complex fluids modeled by the Bingham-Papanastasiou model is considered. New modifications in the design of the classical anchor impeller are introduced. A horizontal blade is added to the standard geometry of the anchor, and the effect of its inclination angle (α) is explored. Four geometrical configurations are realized, namely: α = 0°, 20°, 40°, and 60°. The effects of the number of added horizontal blades, Reynolds number, and Bingham number are also examined. The obtained findings reveal that the most efficient impeller design is that with (case 4) arm blades inclined by 60°.This case allowed the most expansive cavern size with enhanced shearing in the whole vessel volume. The effect of adding second horizontal arm blades (with 60°) gave better hydrodynamic performance only with a slight increase in power consumption. A significant impact of Bingham number (Bn) was observed, where Bn = 5 allowed obtaining the lowest power input and most expansive well-stirred region

    Enhancement of the Hydrodynamic Characteristics in Shell-and-Tube Heat Exchangers by Using W-Baffle Vortex Generators

    Get PDF
    Improving the hydrodynamic characteristics of STHECs (Shell-and-Tube Heat Exchanger Channels) by using BVGs (Baffle-type Vortex Generators) is among the common passive methods due to their proved efficiency. In this computational investigation, the same method is used to enhance the hydrodynamic behavior of STHECs, by inserting W-shaped Baffle-type Vortex Generators. The numerical model represented by the computational FVM (Finite Volume Method) is used to simulate and analyzed the considered physical model. The fluid used is air, its thermal physical properties are constant, turbulent, incompressible, and its temperature is 300 K at the inlet section of the STHEC. The flow velocity ( Uin ) and atmospheric pressure ( Patm ) are considered as boundary conditions at the entrance (x = 0) and exit (x = L) of the channel, respectively. The results showed that the friction coefficients were related to the pressure, velocity, and Reynolds number values. High values of Re yielded an acceleration of the fluid, resulting thus in increased pressure on the solid walls and augmented friction values

    Caractérisation de L'Ecoulement de Fluides Oswaldiens dans un Faisceau à Cylindres Rotatifs (S17)

    Get PDF
    La caractérisation des écoulements entre deux cylindres a été entreprise par voie de simulation numérique. Le cylindre interne tourne avec une vitesse de rotation constante, tandis que l'externe reste fixe. Le fluide mis en procédé présente un comportement pseudoplastique, modélisé par la loi d'Oswald De Waele. L'influence de la vitesse d'entrée d'écoulement et la rhéologie évolutive du fluide sur la structure hydrodynamique a été étudiée. Le processus est supposé isotherme dans un régime laminaire

    Modélisation numérique des écoulements générés dans une cuve mécaniquement agitée par une turbine de Rushton.

    Get PDF
    Cet article concerne une simulation numérique de l'écoulement des fluides pseudoplastiques dans une cuve mécaniquement agitée par une turbine de Rushton. La présence des chicanes dans la cuve a une influence importante sur la taille des vortex. La largeur de ces chicanes doit être optimisée, et c'est l'objet de cette étude. La détermination de la taille de ces vortex est mise en évidence et l'influence des paramètres rhéologiques et hydrodynamiques des fluides est étudiée

    Effects of in-line deflectors on the overall performance of a channel heat exchanger

    Get PDF
    The turbulent convective thermal transfer in channel heat exchangers (CHEs) is studied numerically via the CFD (Computational Fluid Dynamics) method. Deflectors are inserted on the hot bottom walls of the heat channel to enhance the hydrothermal characteristics. Various shapes of in-line deflectors are considered, namely: rectangular (a/b = 0.00), cascaded rectangular-triangular (a/b = 0.25, 0.50, and 0.75), and triangular (a/b = 1.00) shapes. From the obtained results, the inclusion of in-line deflectors with a/b = 0.75 has given the most significant thermal enhancement factor, which was higher than that for a/b = 0.00, 0.25, 0.50, and 1.00 by about 5.36, 5.06, 67.27, and 3.88%, respectively. Also, the in-line cascaded deflector’ case (a/b = 0.75) shows an increase in the enhancement factor (η) from 4 to 15.44% over the cases of one deflector (corrugated, rectangular, triangular, trapezoidal, arc, (+), S, 45° V, 45° W, T, Γ, and ε-shaped) or two deflectors (staggered corrugated). This highlights the effectiveness of in-line cascaded rectangular-triangular deflectors with a/b = 0.75 in improving the performance of the proposed exchanger for the conditions adopted.https://www.tandfonline.com/loi/tcfm20hj2022Mechanical and Aeronautical Engineerin

    Numerical calculations of the thermal-aerodynamic characteristics in a solar duct with multiple V-baffles

    Get PDF
    The study aimed to enhance the heat transport by improving the hydrodynamic structure of the system by changing and restructuring the duct’s internal geometry. Modern fins, of the shape ‘V’, have been proposed with different dimensions, and they are periodically arranged over the duct surfaces. The most important steps of this research are the change in the V-fin attack-angle (40°–80°), length (Hb/2, 3Hb/4, Hb, 5Hb/4 and 3Hb/2), and separation length (Ds/2, 3Ds/4, Ds and 5Ds/4), as well as the flow rate (6 × 103–3 × 104). The study yielded an optimum case for a 40-degree attack-angle, with a factor of thermal enhancement of 2.163 for the highest value of Reynolds number. On the other hand, improving the length of the V-fins or decreasing in the space between them, increases the flow strength by enlarging the recycling cells, which reflects on the hydrodynamic behavior, and changes the heat transfer. The presence of this new model offins also highlights a hydrothermal improvement ranging between 1.196 and 23.779 percent compared to the previously indicated models, reflecting the effectiveness of the new system of solar heat exchangers with air V-finned ducts.https://www.tandfonline.com/loi/tcfm20pm2020Mechanical and Aeronautical Engineerin

    Agitation of yield stress fluids in different vessel shapes

    Get PDF
    The Agitation of yields stress fluids with a six-curved-blade impeller (Scaba 6SRGT) is numerically investigated in this paper. The xanthan gum solution in water which is used as a working fluid is modeled by the Herschel–Bulkley model. The main purpose of this paper is to investigate the effect of vessel design on the flow patterns, cavern size and energy consumption. Three different vessel shapes have been performed: a flat bottomed cylindrical vessel, a dished bottomed cylindrical vessel and a closed spherical vessel. The comparison between the results obtained for the three vessel configurations has shown that the spherical shapes provide uniform flows in the whole vessel volume and require less energy consumption. Effects of the agitation rate and the impeller clearance from the tank bottom for the spherical vessel are also investigated. Some predicted results are compared with other literature data and a satisfactory agreement is found

    Performance of Helical Ribbon and Screw Impellers for Mixing Viscous Fluids in Cylindrical Reactors

    No full text
    The present paper deals with the mixing of a highly viscous fluid by close-clearance impellers in cylindrical vessels. The study is performed via numerical simulations. Calculations are achieved by the discretization of continuity and momentum equations with the finite volume method. The effect of blade diameter and its shape on the well-stirred region size and the power consumption is investigated. For highly viscous fluids, the obtained results suggest the use of impellers rotating at low Reynolds number, and having a blade with the same shape of the tank to ensure mixing near the vessel base. A comparison is made between the performance of a simple helical ribbon (HR), a simple small screw (SS), helical ribbon-small screw (HR-SS) and a large screw (LS) impeller. The predicted results allow the following classification of impellers studied, based on less power requirements and small size of well-agitated region: SS < HR < HR-SS < LS
    • …
    corecore