7 research outputs found

    The crosstalk between the ERK and the cAMP signalling pathways in PC12 Cells

    Get PDF
    The extracellular-regulated kinase (ERK) signalling pathway is involved in the control of different biological processes such as survival, proliferation and differentiation. In PC12 cells, the ERK signalling pathway integrates different external stimuli: epidermal growth factor (EGF) stimulates the ERK pathway transiently and induces cell proliferation, whereas nerve growth factor (NGF) induces sustained activation of ERK and promotes cell differentiation into sympathetic-like neurons. The second messenger 3’,5’-cyclic adenosine monophosphate (cAMP) controls a plethora of cellular events from metabolic to cellular signalling pathways. Over the years, lines of evidence have shown that cAMP is also involved in the regulation of cell growth and cell differentiation, suggesting a possible crosstalk between these two pathways. Selective phosphodiesterase (PDE) inhibitors were used to block the degradation of cAMP. These inhibitors increased the level of cAMP, but had different effects on the activation of ERK. Upon both NGF and EGF stimulations, cilostamide had the strongest effect and doubled the intensity of the phosphorylation of ERK, identifying PDE3 to control the level of cAMP relevant for the regulation of the ERK pathway. The treatment with cilostamide enhanced the differentiation of PC12 cells and the combination of both cilostamide and rolipram (a PDE4 inhibitor) turned the proliferative effect of EGF into a differentiation effect. The route for cAMP in the regulation of the ERK pathway was decomposed by using the cAMP analogues 8-pCPT-2’-O-Me-cAMP and 6-Bnz-cAMP. They specifically activate the Exchange protein activated by cyclic AMP (Epac) and the cAMP regulated protein kinase (PKA) respectively, which were hypothesised to be the effectors of cAMP in the regulation of ERK. The Epac agonist mimicked the effects of cilostamide on the activation of ERK, but failed to enhance cell differentiation. The PKA agonist reduced the phosphorylation ERK upon EGF. It was suggested that the activation of ERK in response to cAMP was mainly mediated through Epac rather than PKA, and that the activation of both PKA and Epac are required to induce cellular differentiation. To elucidate the differential regulation of the activation of ERK upon NGF and EGF stimulation and in response to cAMP, the activity of Ras and Rap1 were measured by affinity pulldown assays. Upon EGF the signal was transduced through Ras only, whereas upon NGF the signal was mediated through both Ras and Rap1. cAMP sensitised Rap1 that became activated upon EGF stimulation indicating that cAMP can switch on the Rap1/B-Raf pathway. This correlated with the increase in the phosphorylation of ERK in response to high levels of cAMP upon EGF stimulation. Then, the role of Raf-1 and C3G, a guanine exchange factor for Rap1, were investigated using small interfering RNA. The depletion of Raf-1 showed that Raf-1 is not essential for transducing the mitogen signal upon NGF stimulation and suggested that Ras mediates the signal through B-Raf upon EGF stimulation to compensate for the loss of Raf-1. The depletion of C3G also confirmed that the activation of ERK in response to cAMP is mediated through the Rap1/B-Raf pathway. Finally, the interaction between Raf-1 and AKAP79 was demonstrated for the first time suggesting the existence of a complex between Raf-1, AKAP and PKA and therefore a possible molecular mechanism for the inhibition of Raf-1 by cAMP through PKA. The data presented in this thesis demonstrates that cAMP participates to finely tune the regulation of the ERK signalling pathway and can be use as a tool to elucidate the network comprising the ERK cascade

    LKB1 signalling attenuates early events of adipogenesis and responds to adipogenic cues.

    Get PDF
    cAMP-response element-binding protein (CREB) is required for the induction of adipogenic transcription factors such as CCAAT/enhancer-binding proteins (C/EBPs). Interestingly, it is known from other tissues that LKB1 and its substrates AMP-activated protein kinase (AMPK) and salt-inducible kinases (SIKs), negatively regulate gene expression by phosphorylating the CREB co-activator CRTC2 and class IIa histone deacetylases (HDACs), which results in their exclusion from the nucleus where they co-activate or inhibit their targets. In this study, we show that AMPK/SIK signalling is acutely attenuated during adipogenic differentiation of 3T3-L1 preadipocytes, which coincides with dephosphorylation and nuclear translocation of CRTC2 and HDAC4. When subjected to differentiation, 3T3-L1 preadipocytes in which LKB1 expression was stably reduced using shRNA (LKB1-shRNA), as well as LKB1 knockout mouse embryonic fibroblasts (LKB1-/- MEFs), differentiated more readily into adipocyte-like cells and accumulated more triglycerides compared to scrambled-shRNA 3T3-L1 cells or Wt MEFs. In addition, the phosphorylation of CRTC2 and HDAC4 was reduced, and the mRNA expression of adipogenic transcription factors C/EBPα, peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte-specific proteins such as hormone sensitive lipase (HSL), fatty acid synthase (FAS), aP2, Glut4 and adiponectin was increased in the absence of LKB1. The mRNA and protein expression of CHOP-10, a dominant negative member of the C/EBP family, was reduced in LKB1 shRNA expressing cells, providing a potential mechanism for the up-regulation of Pparg and Cebpa. These results support the hypothesis that LKB1 signalling keeps preadipocytes in their non-differentiated form

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel

    Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes.

    No full text
    Protein kinase B is known to mediate a number of biological responses to insulin and growth factors, its role in glucose uptake being one of the most extensively studied. In this paper, we have employed a recently described allosteric inhibitor of PKB, Akti, to clarify the role of PKB in lipid metabolism in adipocytes - a subject that has received less attention. Pretreatment of primary rat and 3T3L1 adipocytes with Akti resulted in dose-dependent inhibition of PKB phosphorylation and activation in response to insulin, without affecting upstream insulin signaling (IR, IRS) or the insulin-induced PI3-K dependent activation of the ERK/RSK pathway. PKB activity was required for the insulin-induced activation of PDE3B and for the anti-lipolytic action of insulin. Moreover, inhibition of PKB activity resulted in a reduction in de novo lipid synthesis and in the ability of insulin to stimulate this process. The regulation of the rate-limiting lipogenic enzyme ACC by insulin through dephosphorylation of S79, which is a target for AMPK, was dependent on the presence of active PKB. Lastly, AMPK was shown to be phosphorylated by PKB on S485 in response to insulin and this was associated with a reduction in AMPK activity. In summary, we propose that PKB is required for the positive effects of insulin on lipid storage, and that regulation of PDE3B and AMPK by PKB is important for these effects. Key words: Akt, PDE3B, ACC, AMPK, lipogenesis

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    No full text
    Background: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. Results: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. Conclusion: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and CyclacelDeposited by bulk impor

    Elementi koji reguliraju biosintezu tetraciklinskih antibiotika u genskim nakupinama: otcG gen pozitivno regulira proizvodnju oksitetraciklina u vrste Streptomyces rimosus

    Get PDF
    The expression of bacterial polyketide synthase gene clusters is often controlled by a number of different families of regulatory proteins that can have either a pathway-specific or a pleiotropic mode of action, e.g. the SARP family (Streptomyces antibiotic regulatory proteins), ribosome-associated ppGpp synthetase, γ-butyrolactone-binding regulatory proteins, and two-component regulatory proteins. The molecular genetics of such regulatory mechanisms that govern the biosynthesis of tetracyclines is poorly understood. In this work, a comparative bioinformatic analysis of regulatory genes present in three tetracycline antibiotic gene clusters, namely oxytetracycline (OTC), chlortetracycline and recently cloned chelocardin gene clusters of S. rimosus, S. aureofaciens and Amycolatopsis sulphurea has been performed. A SARP family regulatory protein is located in the chlortetracycline gene cluster, but is not detected in the gene cluster encoding OTC biosynthesis. Interestingly, the only regulatory element identified in chelocardin gene cluster was chdA, an otrR and ctcR homologue from the TetR family of regulators that regulates the expression of the otrB and ctc05 exporter genes in the oxytetracycline and chlortetracycline gene clusters. In the oxytetracycline gene cluster, a new LAL (LuxR) family regulatory gene homologue, otcG, was identified. This homologue is also present in the ctc gene cluster. By gene disruption and overexpression experiments, a \u27conditionally positive\u27 role of otcG in OTC biosynthesis has been demonstrated. The observation, the bioinformatics data and the previous work on phosphate regulation suggest the presence of a more complex, fine tuning role of the otcG gene product in overall expression of genes for OTC biosynthesis.Ekspresiju bakterijskih genskih nakupina poliketidnih sintaza obično reguliraju različiti vrlo specifični proteini koji su uglavnom usmjereni samo na ciljane gene u nakupini gena ili je riječ o regulatornim genima što djeluju šire na stanične procese, takozvani pleiotropni regulatori. Prema načinu djelovanja ti se regulatorni proteini mogu podijeliti u više skupina, kao što su SARP (engl. Streptomyces Antibiotic Regulatory Proteins), skupina ribosomski povezanih regulatornih proteina nazvanih ppGpp sintaze, γ-butirolaktonskih veznih i dvokomponentnih regulatornih proteina. Molekularna genetika takvih regulatornih mehanizama, koji utječu na biosintezu tetraciklina, još je i danas slabo istražena. U ovom je radu prikazana komparativna bioinformatička studija regulatornih proteina triju genskih nakupina koje kodiraju biosintezu oksitetraciklina (OTC) u vrste Streptomyces rimosus, klortetraciklina (u vrste Streptomyces aureofaciens), a i nedavno klonirane genske nakupine za biosintezu kelokardina (CHD) u vrste Amycolatopsis sulphurea. U genskoj nakupini koja kodira biosintezu klortetraciklina nalazi se takozvani SARP regulatorni gen. Međutim, homolog toga gena ne postoji u nakupini gena za biosintezu oksitetraciklina. U nakupini gena za biosintezu kelokardina pronađen je samo jedan regulatorni gen nazvan chdA, homolog gena otrR i ctcR iz skupine TetR regulatornih proteina, koji regulira ekspresiju otrB i ctc05 gena u nakupinama gena za biosintezu oksitetraciklina i klortetraciklina. U genskoj nakupini za biosintezu oksitetraciklina identificiran je novi regulatorni protein iz skupine LAL (LuxR), nazvan OtcG. Taj se genski homolog nalazi i u genskoj nakupini za biosintezu klortetraciklina. Inaktivacijom i povećanom ekspresijom gena otcG eksperimentalno je utvrđeno njegovo djelovanje kao uvjetno pozitivnog regulatora u biosintezi oksitetraciklina. Takvi eksperimentalni rezultati bioinformatičke studije i rezultati koji se odnose na prijašnje istraživanje utjecaja fosfata na reguliranje biosinteze oksitetraciklina upućuju na vrlo kompleksnu organizaciju regulatornih elemenata i njihova djelovanja u procesu biosinteze oksitetraciklina, u kojima sudjeluje i novi regulatorni element, produkt gena otcG

    A correction to the research article titled: Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species

    No full text
    This is a correction to the research article titled: Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical specie
    corecore