1,939 research outputs found

    Criticality of environmental information obtainable by dynamically controlled quantum probes

    Get PDF
    A universal approach to decoherence control combined with quantum estimation theory reveals a critical behavior, akin to a phase transition, of the information obtainable by a qubit probe concerning the memory time of environmental fluctuations. This criticality emerges only when the probe is subject to dynamical control. It gives rise to a sharp transition between two dynamical phases characterized by either a short or long memory time compared to the probing time. This phase-transition of the environmental information is a fundamental feature that facilitates the attainment of the highest estimation precision of the environment memory-time and the characterization of probe dynamics.Comment: 3 pages, 4 figure

    Maximizing information on the environment by dynamically controlled qubit probes

    Get PDF
    We explore the ability of a qubit probe to characterize unknown parameters of its environment. By resorting to quantum estimation theory, we analytically find the ultimate bound on the precision of estimating key parameters of a broad class of ubiquitous environmental noises ("baths") which the qubit may probe. These include the probe-bath coupling strength, the correlation time of generic bath spectra, the power laws governing these spectra, as well as their dephasing times T2. Our central result is that by optimizing the dynamical control on the probe under realistic constraints one may attain the maximal accuracy bound on the estimation of these parameters by the least number of measurements possible. Applications of this protocol that combines dynamical control and estimation theory tools to quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.Comment: 8 pages + 6 pages (appendix), 3 Figure

    Optimal pulse spacing for dynamical decoupling in the presence of a purely-dephasing spin-bath

    Full text link
    Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where for instance it is employed in multiparameter estimation. While a sequence of equidistant control pulses (CPMG) has been ubiquitously used for decoupling, Uhrig recently proposed that a non-equidistant pulse sequence (UDD) may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system-qubits are 13C nuclear spins and the environment consists of a 1H nuclear spin-bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs superior to any non-equidistant DD sequence in the presence of this kind of environmental noise.Comment: To be published in Phys. Rev. A. 15 pages, 16 figures. Presentation of the work was improved. One Figure and some Refs. were adde
    corecore