7 research outputs found

    Liquid Metal Application for Continuously Tunable Frequency Reconfigurable Antenna

    Get PDF
    This paper presents two different designs for frequency reconfigurable antennas capable of continuous tuning. The radiator, for both antenna designs, is a microstrip patch, formed from liquid metal, contained within a microfluidic channel structure. Both patch designs are aperture fed. The microfluidic channel structures are made from polydimethylsiloxane (PDMS). The microfluidic channel structure for the first design has a meander layout and incorporates rows of posts. The simulated antenna provides a frequency tuning range of approximately 118% (i.e. 4.36 GHz) over the frequency range from 1.51 GHz to 5.87 GHz. An experimental result for the fully filled case shows a resonance at 1.49 GHz (1.3% error compared with the simulation). Experienced rheological behavior of the liquid metal necessitates microfluidic channel modifications. For that reason, we modified the channel structure used to realise the radiating patch for the second design. Straight channels are implemented in the second microfluidic device. According to simulation the design yields a frequency tuning range of about 77% (i.e. 3.28 GHz) from 2.62 GHz to 5.90 GHz

    Liquid Metal Bandwidth-Reconfigurable Antenna

    Get PDF
    This letter shows how slugs of liquid metal can be used to connect/disconnect large areas of metalization and achieve a radiation performance not possible by using conventional switches. The proposed antenna can switch its operating bandwidth between ultrawideband and narrowband by connecting/disconnecting the ground plane for the feedline from that of the radiator. This could be achieved by using conventional semiconductor switches. However, such switches provide point-like contacts. Consequently, there are gaps in electrical contact between the switches. Surface currents, flowing around these gaps, lead to significant back radiation. In this letter, the slugs of a liquid metal are used to completely fill the gaps. This significantly reduces the back radiation, increases the bore-sight gain, and produces a pattern identical to that of a conventional microstrip patch antenna. Specifically, the realized gain and total efficiency are increased by 2 dBi and 24%, respectively. The antenna has potential applications in wireless systems employing cognitive radio (CR) and spectrum aggregation

    Millimeter Wave Beam Steerable/Reconfigurable Liquid Metal Array Antenna

    Get PDF
    This paper presents a mm-wave beam steerable/reconfigurable phased array antenna incorporating Eutectic Gallium Indium Alloy (EGaIn) liquid metal switches. The antenna operates at 26.2 GHz and has a scan range of ±58° which yields a ±40° improvement in scan range over a conventional dipole phased array antenna at a side lobe level of or better than 8.8 dB. Moreover the beam scanning approach proposed here supports continuous beam steering over a much wider scan angle range than is possible with conventional techniques

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Large-scale unit commitment under uncertainty: an updated literature survey

    No full text
    corecore