274 research outputs found

    Convergence of Wnt signalling on the HNF4a-driven transcription in controlling liver zonation

    Get PDF
    BACKGROUND & AIMS: In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/beta-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte specificity. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) allowed the transcriptional profiling of hepatocytes derived from in vitro differentiation of liver stem cells. The GSK3beta inhibitor 6-bromoindirubin-3'-oxime (BIO) was used for beta-catenin stabilization. Co-immunoprecipitations were used to study biochemical protein interactions while ChIP assays allowed the in vivo inspection of PV and PP genes regulatory regions. RESULTS: We found that spontaneous differentiation of liver stem cells gives rise to PP hepatocytes that, after Wnt pathway activation, switch into PV hepatocytes. Next, we showed that the Wnt downstream player LEF1 interacts with the liver-enriched transcriptional factor HNF4alpha. Finally, we unveiled that the BIO induced activation of PV genes correlates with LEF1 binding to both its own and HNF4alpha consensus, and the repression of PP genes correlates with HNF4alpha displacement from its own consensus. CONCLUSION: Our data show a direct and hitherto unknown convergence of the canonical Wnt signaling on the HNF4alpha-driven transcription providing evidences of a mechanism controlling liver zonated gene expression

    The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A

    Get PDF
    Post-transcriptional gene silencing (PTGS) pathways play a role in genome defence and have been extensively studied, yet how repetitive elements in the genome are identified is still unclear. It has been suggested that they may produce aberrant transcripts (aRNA) that are converted by an RNA-dependent RNA polymerase (RdRP) into double-stranded RNA (dsRNA), the essential intermediate of PTGS. However, how RdRP enzymes recognize aberrant transcripts remains a key question. Here we show that in Neurospora crassa the RdRP QDE-1 interacts with Replication Protein A (RPA), part of the DNA replication machinery. We show that both QDE-1 and RPA are nuclear proteins and that QDE-1 is specifically recruited onto the repetitive transgenic loci. We speculate that this localization of QDE-1 could allow the in situ production of dsRNA using transgenic nascent transcripts as templates, as in other systems. Supporting a link between the two proteins, we found that the accumulation of short interfering RNAs (siRNAs), the hallmark of silencing, is dependent on an ongoing DNA synthesis. The interaction between QDE-1 and RPA is important since it should guide further studies aimed at understanding the specificity of the RdRP and it provides for the first time a potential link between a PTGS component and the DNA replication machinery

    Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins

    Get PDF
    Background/aims The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. Methods A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naive HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. Results A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. Conclusions This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy

    The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4\uce\ub1

    Get PDF
    The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4\uce\ub1 (HNF4\uce\ub1) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4\uce\ub1 recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4\uce\ub1 depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4\uce\ub1. HNF4\uce\ub1, in cooperation with its target HNF1\uce\ub1, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4\uce\ub1-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. Conclusion: The pivotal role of HNF4\uce\ub1 in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4\uce\ub1 activator and repressor functions are necessary for the identity of hepatocytes. Copyright \uc2\ua9 2011 American Association for the Study of Liver Diseases

    The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4α

    Get PDF
    The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. Conclusion: The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes. Copyright © 2011 American Association for the Study of Liver Diseases

    Neutron Beta Decay Studies with Nab

    Full text link
    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg, Florida, May 201

    A clinical trial of oral hyposensitization in systemic allergy to nickel.

    Get PDF
    Nickel allergy is the most common contact allergy. Some nickel-sensitive patients present systemic (cutaneous and/or digestive) symptoms related to the ingestion of high nickel-content foods, which significantly improve after a specific low nickel-content diet. The etiopathogenetic role of nickel in the genesis of systemic disorders is, furthermore, demonstrated by the relapse of previous contact lesions, appearance of widespread eczema and generalized urticaria-like lesions after oral nickel challenge test. The aim of this study is to investigate the safety and efficacy of a specific oral hyposensitization to nickel in patients with both local contact disorders and systemic symptoms after the ingestion of nickel-containing foods. Inclusion criteria for the recruitment of these patients were (other than a positive patch test) a benefit higher than 80% from a low nickel-content diet and a positive oral challenge with nickel. Based on the previous experiences, our group adopted a therapeutic protocol by using increasing oral doses of nickel sulfate associated to an elimination diet. Results have been excellent: this treatment has been effective in inducing clinical tolerance to nickel-containing foods, with a low incidence of side effects (gastric pyrosis, itching erythema)

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. \uc2\ua9 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    PEN: a low energy test of lepton universality

    Full text link
    Allowed charged π\pi meson decays are characterized by simple dynamics, few available decay channels, mainly into leptons, and extremely well controlled radiative and loop corrections. In that sense, pion decays represent a veritable triumph of the standard model (SM) of elementary particles and interactions. This relative theoretical simplicity makes charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for studying pion structure and chiral dynamics. Even after considerable recent improvements, experimental precision is lagging far behind that of the theoretical description for pion decays. We review the current state of experimental study of the pion electronic decay π+e+νe(γ)\pi^+ \to e^+\nu_e(\gamma), or πe2(γ)\pi_{e2(\gamma)}, where the (γ)(\gamma) indicates inclusion and explicit treatment of radiative decay events. We briefly review the limits on non-SM processes arising from the present level of experimental precision in πe2(γ)\pi_{e2(\gamma)} decays. Focusing on the PEN experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia, US
    corecore