1,573 research outputs found

    Quantum interference phenomena in the Casimir effect

    Get PDF
    We propose a definitive test of whether plates involved in Casimir experiments should be modeled with ballistic or diffusive electrons--a prominent controversy highlighted by a number of conflicting experiments. The unambiguous test we propose is a measurement of the Casimir force between a disordered quasi-2D metallic plate and a three-dimensional metallic system at low temperatures, in which disorder-induced weak localization effects modify the well-known Drude result in an experimentally tunable way. We calculate the weak localization correction to the Casimir force as a function of magnetic field and temperature and demonstrate that the quantum interference suppression of the Casimir force is a strong, observable effect. The coexistence of weak localization suppression in electronic transport and Casimir pressure would lend credence to the Drude theory of the Casimir effect, while the lack of such correlation would indicate a fundamental problem with the existing theory. We also study mesoscopic disorder fluctuations in the Casimir effect and estimate the width of the distribution of Casmir energies due to disorder fluctuations.Comment: 9 pages, 9 figure

    Non-analytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit coupled material

    Get PDF
    We propose the Casimir effect as a general method to observe Lifshitz transitions in electron systems. The concept is demonstrated with a planar spin-orbit coupled semiconductor in a magnetic field. We calculate the Casimir force between two such semiconductors and between the semiconductor and a metal as a function of the Zeeman splitting in the semiconductor. The Zeeman field causes a Fermi pocket in the semiconductor to form or collapse by tuning the system through a topological Lifshitz transition. We find that the Casimir force experiences a kink at the transition point and noticeably different behaviors on either side of the transition. The simplest experimental realization of the proposed effect would involve a metal-coated sphere suspended from a micro-cantilever above a thin layer of InSb (or another semiconductor with large gg-factor). Numerical estimates are provided and indicate that the effect is well within experimental reach.Comment: 5 pages + 6 page supplement; 5 figure

    Strange metal in the doped Hubbard model via percolation

    Full text link
    Many strongly correlated systems, including high-temperature superconductors such as the cuprates, exhibit strange metallic behavior in certain parameter regimes characterized by anomalous transport properties that are irreconcilable with a Fermi-liquid-like description in terms of quasiparticles. The Hubbard model is a standard theoretical starting point to examine the properties of such systems and also exhibits non-Fermi-liquid behavior in simulations. Here we analytically study the two-dimensional hole-doped Hubbard model, first identifying a percolation transition that occurs in the low-energy sector at critical hole doping pc∼0.19p_c\sim 0.19. We then use the critical properties near this transition to rewrite the Hubbard Hamiltonian in a way that motivates a large-NN model with strange metallic properties. In particular, we show that this model has the linear-in-TT resistivity and power-law optical conductivity ∼∣ω∣−2/3\sim |\omega|^{-2/3} observed in the strange metal regime of cuprates, suggesting potential relevance for describing this important class of materials.Comment: 17+2 pages, 6+1 figure

    The Virgo O3 run and the impact of the environment

    Get PDF
    Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers

    Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3

    Get PDF
    The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz

    Fluctuation-dominated quantum oscillations in excitonic insulators

    Full text link
    The realization of excitonic insulators in transition metal dichalcogenide systems has opened the door to explorations of the exotic properties such a state exhibits. We study theoretically the potential for excitonic insulators to show an anomalous form of quantum oscillations: the de Haas-van Alphen effect in an insulating system. We focus on the role of the interactions that generate the energy gap and show that it is crucial to consider quantum fluctuations that go beyond the mean field treatment. Remarkably, quantum fluctuations can be dominant, and lead to quantum oscillations than are significantly larger than those predicted using mean field theory. Indeed, in experimentally accessible parameter regimes these fluctuation-generated quantum oscillations can even be larger than what would be found for the corresponding gapless system.Comment: 4+3 pages, 2+1 figure
    • …
    corecore