18 research outputs found

    On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper

    No full text
    The role of sample chamber configuration for the chemical vapor deposition of graphene over copper was investigated in detail. A configuration in which the gas flow is unrestricted was shown to lead to graphene with an inhomogeneous number of layers (between 1 and 3). An alternative configuration in which one end of the inner tube (in which the sample is placed) is closed so as to restrict the gas flow leads a homogeneous graphene layer number. Depending on the sample placement, either homogeneous monolayer or bilayer graphene is obtained. Under our growth conditions, the data show local conditions play a role on layer homogeneity such that under quasi-static equilibrium gas conditions not only is the layer number stabilized, but the quality of the graphene improves. In short, our data suggests vapor trapping can trap Cu species leading to higher carbon concentrations, which determines layer number and improved decomposition of the carbon feedstock (CH<sub>4</sub>), which leads to higher quality graphene

    <i>In Situ</i> Observations of Free-Standing Graphene-like Mono- and Bilayer ZnO Membranes

    No full text
    ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered graphene-like structure. Graphene-like ZnO layers were later confirmed when supported over a metal substrate. However, the existence of free-standing graphene-like ZnO has, to the best of our knowledge, not been demonstrated. In this work, we show experimental evidence for the <i>in situ</i> formation of free-standing graphene-like ZnO mono- and bilayer ZnO membranes suspended in graphene pores. Local electron energy loss spectroscopy confirms the membranes comprise only Zn and O. Image simulations and supporting analysis confirm that the membranes are graphene-like ZnO. Graphene-like ZnO layers are predicted to have a wide band gap and different and exciting properties as compared to other ZnO structures

    Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition

    No full text
    One of the more common routes to fabricate graphene is by chemical vapor deposition (CVD). This is primarily because of its potential to scale up the process and produce large area graphene. For the synthesis of large area monolayer Cu is probably the most popular substrate since it has a low carbon solubility enabling homogeneous single-layer sheets of graphene to form. This process requires a very clean substrate. In this work we look at the efficiency of common pretreatments such as etching or wiping with solvents and compare them to an oxidation treatment at 1025 °C followed by a reducing process by annealing in H<sub>2</sub>. The oxidation/reduction process is shown to be far more efficient allowing large area homogeneous single layer graphene formation without the presence of additional graphene flakes which form from organic contamination on the Cu surface

    Room Temperature in Situ Growth of B/BO<sub><i>x</i></sub> Nanowires and BO<sub><i>x</i></sub> Nanotubes

    No full text
    Despite significant advances in the synthesis of nanostructures, our understanding of the growth mechanisms of nanowires and nanotubes grown from catalyst particles remains limited. In this study we demonstrate a straightforward route to grow coaxial amorphous B/BO<sub><i>x</i></sub> nanowires and BO<sub><i>x</i></sub> nanotubes using gold catalyst particles inside a transmission electron microscope at room temperature without the need of any specialized or expensive accessories. Exceedingly high growth rates (over 7 μm/min) are found for the coaxial nanowires, and this is attributed to the highly efficient diffusion of B species along the surface of a nanowire by electrostatic repulsion. On the other hand the O species are shown to be relevant to activate the gold catalysts, and this can occur through volatile O species. The technique could be further developed to study the growth of other nanostructures and holds promise for the room temperature growth of nanostructures as a whole

    Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications

    No full text
    Direct growth of graphene on traditional glasses is of great importance for various daily life applications. We report herein the catalyst-free atmospheric-pressure chemical vapor deposition approach to directly synthesizing large-area, uniform graphene films on solid glasses. The optical transparency and sheet resistance of such kinds of graphene glasses can be readily adjusted together with the experimentally tunable layer thickness of graphene. More significantly, these graphene glasses find a broad range of real applications by enabling the low-cost construction of heating devices, transparent electrodes, photocatalytic plates, and smart windows. With a practical scalability, the present work will stimulate various applications of transparent, electrically and thermally conductive graphene glasses in real-life scenarios

    In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation

    No full text
    The promise of sp<sup>2</sup> nanomaterials remains immense, and ways to strategically combine and manipulate these nanostructures will further enhance their potential as well as advance nanotechnology as a whole. The scale of these structures requires precision at the atomic scale. In this sense electron microscopes are attractive as they offer both atomic imaging and a means to structurally modify structures. Here we show how Cr atoms can be used as physical linkers to connect carbon nanotubes and fullerenes to graphene. Crucially, while under electron irradiation, the Cr atoms can drive transformations such as catalytic healing of a hole in graphene with simultaneous transformation of a single wall carbon nanotube into a fullerene. The atomic resolution of the electron microscopy along with density functional theory based total energy calculations provide insight into the dynamic transformations of Cr atom linkers. The work augments the potential of transmission electron microscopes as nanolaboratories

    Stranski–Krastanov and Volmer–Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene

    No full text
    Aside from unusual properties of monolayer graphene, bilayer has been shown to have even more interesting physics, in particular allowing bandgap opening with dual gating for proper interlayer symmetry. Such properties, promising for device applications, ignited significant interest in understanding and controlling the growth of bilayer graphene. Here we systematically investigate a broad set of flow rates and relative gas ratio of CH<sub>4</sub> to H<sub>2</sub> in atmospheric pressure chemical vapor deposition of multilayered graphene. Two very different growth windows are identified. For relatively high CH<sub>4</sub> to H<sub>2</sub> ratios, graphene growth is relatively rapid with an initial first full layer forming in seconds upon which new graphene flakes nucleate then grow on top of the first layer. The stacking of these flakes versus the initial graphene layer is mostly turbostratic. This growth mode can be likened to Stranski–Krastanov growth. With relatively low CH<sub>4</sub> to H<sub>2</sub> ratios, growth rates are reduced due to a lower carbon supply rate. In addition bi-, tri-, and few-layer flakes form directly over the Cu substrate as individual islands. Etching studies show that in this growth mode subsequent layers form beneath the first layer presumably through carbon radical intercalation. This growth mode is similar to that found with Volmer–Weber growth and was shown to produce highly oriented AB-stacked materials. These systematic studies provide new insight into bilayer graphene formation and define the synthetic range where gapped bilayer graphene can be reliably produced

    In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation

    No full text
    The promise of sp<sup>2</sup> nanomaterials remains immense, and ways to strategically combine and manipulate these nanostructures will further enhance their potential as well as advance nanotechnology as a whole. The scale of these structures requires precision at the atomic scale. In this sense electron microscopes are attractive as they offer both atomic imaging and a means to structurally modify structures. Here we show how Cr atoms can be used as physical linkers to connect carbon nanotubes and fullerenes to graphene. Crucially, while under electron irradiation, the Cr atoms can drive transformations such as catalytic healing of a hole in graphene with simultaneous transformation of a single wall carbon nanotube into a fullerene. The atomic resolution of the electron microscopy along with density functional theory based total energy calculations provide insight into the dynamic transformations of Cr atom linkers. The work augments the potential of transmission electron microscopes as nanolaboratories

    Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature

    No full text
    Metal oxide nanoparticles decorating graphene have attracted abundant interest in the scientific community owing to their significant application in various areas such as batteries, gas sensors, and photocatalysis. In addition, metal and metal oxide nanoparticles are of great interest for the etching of graphene, for example, to form nanoribbons, through gasification reactions. Hence it is important to have a good understanding of how nanoparticles interact with graphene. In this work we examine, <i>in situ</i>, the behavior of CuO and ZnO nanoparticles on graphene at room temperature while irradiated by electrons in a transmission electron microscope. ZnO is shown to etch graphene through gasification. In the gasification reaction C from graphene is released as CO or CO<sub>2</sub>. We show that the reaction can occur at room temperature. Moreover, CuO and ZnO particles trapped within a graphene fold are shown to effuse out of a fold through small ruptures. The mass transport in the effusion process between the CuO and ZnO particles is fundamentally different. Mass transport for CuO occurs in an amorphous phase, while for ZnO mass transport occurs through the short-lived gliding of vacancies and dislocations. The work highlights the potential and wealth of electron beam driven chemical reactions of nanomaterials, even at room temperature

    Data for "High yield and wide lateral size growth of α-Mo2C: Exploring the boundaries of CVD growth of bare MXene analogues"

    No full text
    Images and data underlying the results in published scientific paper "High yield and wide lateral size growth of α-Mo2C: Exploring the boundaries of CVD growth of bare MXene analogues" (DOI 10.1088/1361-6528/ad1c97)</p
    corecore