5 research outputs found

    In(Ga)N 3D Growth on GaN-Buffered On-Axis and Off-Axis (0001) Sapphire Substrates by MOCVD

    No full text
    In(Ga)N epitaxial layers were grown on on-axis and off-axis (0001) sapphire substrates with an about 1100 nm-thick GaN buffer layer stack using organometallic chemical vapor deposition at 600 °C. The In(Ga)N layers consisted of a thin (~10–25 nm) continuous layer of small conical pyramids in which large conical pyramids with an approximate height of 50–80 nm were randomly distributed. The large pyramids were grown above the edge-type dislocations which originated in the GaN buffer; the dislocations did not penetrate the large, isolated pyramids. The large pyramids were well crystallized and relaxed with a small quantity of defects, such as dislocations, preferentially located at the contact zones of adjacent pyramids. The low temperature (6.5 K) photoluminescence spectra showed one clear maximum at 853 meV with a full width at half maximum (FWHM) of 75 meV and 859 meV with a FWHM of 80 meV for the off-axis and on-axis samples, respectively

    Structure and Thermal Stability of ε/κ-Ga<sub>2</sub>O<sub>3</sub> Films Deposited by Liquid-Injection MOCVD

    No full text
    We report on crystal structure and thermal stability of epitaxial ε/κ-Ga2O3 thin films grown by liquid-injection metal–organic chemical vapor deposition (LI-MOCVD). Si-doped Ga2O3 films with a thickness of 120 nm and root mean square surface roughness of ~1 nm were grown using gallium-tetramethylheptanedionate (Ga(thd)3) and tetraethyl orthosilicate (TEOS) as Ga and Si precursor, respectively, on c-plane sapphire substrates at 600 °C. In particular, the possibility to discriminate between ε and κ-phase Ga2O3 using X-ray diffraction (XRD) φ-scan analysis or electron diffraction analysis using conventional TEM was investigated. It is shown that the hexagonal ε-phase can be unambiguously identified by XRD or TEM only in the case that the orthorhombic κ-phase is completely suppressed. Additionally, thermal stability of prepared ε/κ-Ga2O3 films was studied by in situ and ex situ XRD analysis and atomic force microscopy. The films were found to preserve their crystal structure at temperatures as high as 1100 °C for 5 min or annealing at 900 °C for 10 min in vacuum ambient (2O3 and possible amorphization of the films
    corecore