56 research outputs found

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Predicting Diabetes in Healthy Population through Machine Learning

    Get PDF
    In this paper, we revisit the data of the San Antonio Heart Study, and employ machine learning to predict the future development of type-2 diabetes. To build the prediction model, we use the support vector machines and ten features that are wellknown in the literature as strong predictors of future diabetes. Due to the unbalanced nature of the dataset in terms of the class labels, we use 10-fold cross-validation to train the model and a hold-out set to validate it. The results of this study show a validation accuracy of 84.1% with a recall rate of 81.1% averaged over 100 iterations. The outcomes of this study can help in identifying the population that is at high risk of developing type-2 diabetes in the future

    Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test

    Get PDF
    Diabetes is a large healthcare burden worldwide. There is substantial evidence that lifestyle modifications and drug intervention can prevent diabetes, therefore, an early identification of high risk individuals is important to design targeted prevention strategies. In this paper, we present an automatic tool that uses machine learning techniques to predict the development of type 2 diabetes mellitus (T2DM). Data generated from an oral glucose tolerance test (OGTT) was used to develop a predictive model based on the support vector machine (SVM). We trained and validated the models using the OGTT and demographic data of 1,492 healthy individuals collected during the San Antonio Heart Study. This study collected plasma glucose and insulin concentrations before glucose intake and at three time-points thereafter (30, 60 and 120 min). Furthermore, personal information such as age, ethnicity and body-mass index was also a part of the data-set. Using 11 OGTT measurements, we have deduced 61 features, which are then assigned a rank and the top ten features are shortlisted using minimum redundancy maximum relevance feature selection algorithm. All possible combinations of the 10 best ranked features were used to generate SVM based prediction models. This research shows that an individual’s plasma glucose levels, and the information derived therefrom have the strongest predictive performance for the future development of T2DM. Significantly, insulin and demographic features do not provide additional performance improvement for diabetes prediction. The results of this work identify the parsimonious clinical data needed to be collected for an efficient prediction of T2DM. Our approach shows an average accuracy of 96.80% and a sensitivity of 80.09% obtained on a holdout set

    A Wearable, Low-cost Hand Tremor Sensor for Detecting Hypoglycemic Events in Diabetic Patients

    Get PDF
    Severe hypoglycemia leverages complication in diabetes patients: e.g., it increases death rate by a six-fold. Therefore, early detection and prediction of hypoglycemic events are of utmost importance. This publication presents a prototype of a wearable hand-tremor system that detects the onset of hypoglycemic events. The results show the prototype is capable of simulating anticipated frequency and amplitude of the tremor relevant for hypoglycemic events. The initial functional performance-tests demonstrate a maximum error of 4.75% in the detecting the tremor frequency

    Amide proton transfer weighted imaging in pediatric neuro-oncology:initial experience

    Get PDF
    Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p &lt; 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p &lt; 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.</p
    corecore