2 research outputs found

    Files cryptography based on one-time pad algorithm

    Get PDF
    The Vernam-cipher is known as a one-time pad of algorithm that is an unbreakable algorithm because it uses a typically random key equal to the length of data to be coded, and a component of the text is encrypted with an element of the encryption key. In this paper, we propose a novel technique to overcome the obstacles that hinder the use of the Vernam algorithm. First, the Vernam and advance encryption standard AES algorithms are used to encrypt the data as well as to hide the encryption key; Second, a password is placed on the file because of the use of the AES algorithm; thus, the protection record becomes very high. The Huffman algorithm is then used for data compression to reduce the size of the output file. A set of files are encrypted and decrypted using our methodology. The experiments demonstrate the flexibility of our method, and it’s successful without losing any information

    Fog computing scheduling algorithm for smart city

    Get PDF
    With the advent of the number of smart devices across the globe, increasing the number of users using the Internet. The main aim of the fog computing (FC) paradigm is to connect huge number of smart objects (billions of object) that can make a bright future for smart cities. Due to the large deployments of smart devices, devices are expected to generate huge amounts of data and forward the data through the Internet. FC also refers to an edge computing framework that mitigates the issue by applying the process of knowledge discovery using a data analysis approach to the edges. Thus, the FC approaches can work together with the internet of things (IoT) world, which can build a sustainable infrastructure for smart cities. In this paper, we propose a scheduling algorithm namely the weighted round-robin (WRR) scheduling algorithm to execute the task from one fog node (FN) to another fog node to the cloud. Firstly, a fog simulator is used with the emergent concept of FC to design IoT infrastructure for smart cities. Then, spanning-tree routing (STP) protocol is used for data collection and routing. Further, 5G networks are proposed to establish fast transmission and communication between users. Finally, the performance of our proposed system is evaluated in terms of response time, latency, and amount of data used
    corecore