2,261 research outputs found

    High Temperature Superconductivity: the explanation

    Full text link
    Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script

    Parameter-free expression for superconducting Tc in cuprates

    Get PDF
    A parameter-free expression for the superconducting critical temperature of layered cuprates is derived which allows us to express Tc in terms of experimentally measured parameters. It yields Tc values observed in about 30 lanthanum, yttrium and mercury-based samples for different levels of doping. This remarkable agreement with the experiment as well as the unusual critical behaviour and the normal-state gap indicate that many cuprates are close to the Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review

    S-duality in Twistor Space

    Get PDF
    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space MHM_H must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of MHM_H, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include MHM_H corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur

    Coherent `ab' and `c' transport theory of high-TcT_{c} cuprates

    Full text link
    We propose a microscopic theory of the `cc'-axis and in-plane transport of copper oxides based on the bipolaron theory and the Boltzmann kinetics. The fundamental relationship between the anisotropy and the spin susceptibility is derived, ρc(T,x)/ρab(T,x)x/Tχs(T,x)\rho_{c}(T,x)/\rho_{ab}(T,x)\sim x/\sqrt{T}\chi_{s}(T,x). The temperature (T)(T) and doping (x)(x) dependence of the in-plane, ρab\rho_{ab} and out-of-plane, ρc\rho_{c} resistivity and the spin susceptibility, χs\chi_{s} are found in a remarkable agreement with the experimental data in underdoped, optimally and overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} for the entire temperature regime from TcT_{c} up to 800K800K. The normal state gap is explained and its doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques

    A possibility to measure elastic photon--photon scattering in vacuum

    Full text link
    Photon--photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a consequence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on interacting modes generated in microwave waveguides or cavities [G. Brodin, M. Marklund and L. Stenflo, Phys. Rev. Lett. \textbf{87} 171801 (2001)]. Here we materialize these ideas, suggest a concrete cavity geometry, make quantitative estimates and propose experimental details. It is found that detection of photon-photon scattering can be within the reach of present day technology.Comment: 7 pages, 3 figure

    D3-instantons, Mock Theta Series and Twistors

    Get PDF
    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2,Z). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2,Z) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte

    Cut-and-Join operator representation for Kontsevich-Witten tau-function

    Full text link
    In this short note we construct a simple cut-and-join operator representation for Kontsevich-Witten tau-function that is the partition function of the two-dimensional topological gravity. Our derivation is based on the Virasoro constraints. Possible applications of the obtained expression are discussed.Comment: 5 pages, minor correction

    Degenerate Plebanski Sector and Spin Foam Quantization

    Full text link
    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact ensures that its spin foam quantization is given by the SU(2) Crane-Yetter model and allows to test various approaches of imposing the simplicity constraints. Our analysis strongly suggests that restricting representations and intertwiners in the state sum for Spin(4) BF theory is not sufficient to get the correct vertex amplitude. Instead, for a general theory of Plebanski type, we propose a quantization procedure which is by construction equivalent to the canonical path integral quantization and, being applied to our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic feature of this procedure is the use of secondary second class constraints on an equal footing with the primary simplicity constraints, which leads to a new formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references adde

    Breakdown of the Migdal-Eliashberg theory in the strong-coupling adiabatic regime

    Get PDF
    In view of some recent works on the role of vertex corrections in the electron-phonon system we readress an important question of the validity of the Migdal-Eliashberg theory. Based on the solution of the Holstein model and inverse coupling constant expansion, we argue that the standard Feynman-Dyson perturbation theory by Migdal and Eliashberg with or without vertex corrections cannot be applied if the electron-phonon coupling constant λ\lambda is larger than 1 for any ratio of the phonon and Fermi energies. In the extreme adiabatic limit of the Holstein model electrons collapse into self-trapped small polarons or bipolarons due to spontaneous translational-symmetry breaking when λ\lambda is between 0.5 and 1.3 (depending on the lattice dimensionality). With the increasing phonon frequency the region of the applicability of the theory shrinks to lower values of the coupling constant.Comment: 4 pages, 1 figur
    corecore