5 research outputs found

    Stabilization of Hypophosphite in the Binding Pocket of a Dinuclear Macrocyclic Complex: Synthesis, Structure, and Properties of [Ni<sub>2</sub>L(Ī¼ā€‘O<sub>2</sub>PH<sub>2</sub>)]BPh<sub>4</sub> (L = N<sub>6</sub>S<sub>2</sub> Donor Ligand)

    No full text
    The dinickelĀ­(II) complex [Ni<sub>2</sub>LĀ­(ClO<sub>4</sub>)]Ā­ClO<sub>4</sub> (<b>1</b>), where L<sup>2ā€“</sup> represents a 24-membered macrocyclic hexaamine-dithiophenolate ligand, reacts with [<i>n</i>Bu<sub>4</sub>N]Ā­H<sub>2</sub>PO<sub>2</sub> to form the hypophosphito-bridged complex [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]<sup>+</sup>, which can be isolated as an air-stable perchlorate [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­ClO<sub>4</sub> (<b>2</b>) or tetraphenylborate [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­BPh<sub>4</sub> (<b>3</b>) salt. <b>3</b>Ā·MeCN crystallizes in the triclinic space group <i>P</i>1Ģ…. The bisoctahedral [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]<sup>+</sup> cation has a N<sub>3</sub>NiĀ­(Ī¼<sub>1,3</sub>-O<sub>2</sub>PH<sub>2</sub>)Ā­(Ī¼-S)<sub>2</sub>NiN<sub>3</sub> core structure with the hypophosphito ligand attached to the two Ni<sup>II</sup> ions in a Ī¼<sub>1,3</sub>-bridging mode. The hypophosphito ligand is readily replaced by carboxylates, in agreement with a higher affinity of the [Ni<sub>2</sub>L]<sup>2+</sup> dication for more basic oxoanions. Treatment of [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­ClO<sub>4</sub> with H<sub>2</sub>O<sub>2</sub> or MCPBA results in the oxidation of the bridging thiolato to sulfonato groups. The hypophosphito group is not oxidized under these conditions due to the steric protection offered by the supporting ligand. An analysis of the temperature-dependent magnetic susceptibility data for <b>3</b> reveals the presence of ferromagnetic exchange interactions between the Ni<sup>ii</sup> (<i>S</i> = 1) ions with a value for the magnetic exchange coupling constant <i>J</i> of +22 cm<sup>ā€“1</sup> (<b>H</b> = āˆ’2<i>J</i><b>S</b><sub>1</sub><b>S</b><sub>2</sub>). These results are additionally supported by DFT (density functional theory) calculations

    Stabilization of Hypophosphite in the Binding Pocket of a Dinuclear Macrocyclic Complex: Synthesis, Structure, and Properties of [Ni<sub>2</sub>L(Ī¼ā€‘O<sub>2</sub>PH<sub>2</sub>)]BPh<sub>4</sub> (L = N<sub>6</sub>S<sub>2</sub> Donor Ligand)

    No full text
    The dinickelĀ­(II) complex [Ni<sub>2</sub>LĀ­(ClO<sub>4</sub>)]Ā­ClO<sub>4</sub> (<b>1</b>), where L<sup>2ā€“</sup> represents a 24-membered macrocyclic hexaamine-dithiophenolate ligand, reacts with [<i>n</i>Bu<sub>4</sub>N]Ā­H<sub>2</sub>PO<sub>2</sub> to form the hypophosphito-bridged complex [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]<sup>+</sup>, which can be isolated as an air-stable perchlorate [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­ClO<sub>4</sub> (<b>2</b>) or tetraphenylborate [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­BPh<sub>4</sub> (<b>3</b>) salt. <b>3</b>Ā·MeCN crystallizes in the triclinic space group <i>P</i>1Ģ…. The bisoctahedral [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]<sup>+</sup> cation has a N<sub>3</sub>NiĀ­(Ī¼<sub>1,3</sub>-O<sub>2</sub>PH<sub>2</sub>)Ā­(Ī¼-S)<sub>2</sub>NiN<sub>3</sub> core structure with the hypophosphito ligand attached to the two Ni<sup>II</sup> ions in a Ī¼<sub>1,3</sub>-bridging mode. The hypophosphito ligand is readily replaced by carboxylates, in agreement with a higher affinity of the [Ni<sub>2</sub>L]<sup>2+</sup> dication for more basic oxoanions. Treatment of [Ni<sub>2</sub>LĀ­(Ī¼-O<sub>2</sub>PH<sub>2</sub>)]Ā­ClO<sub>4</sub> with H<sub>2</sub>O<sub>2</sub> or MCPBA results in the oxidation of the bridging thiolato to sulfonato groups. The hypophosphito group is not oxidized under these conditions due to the steric protection offered by the supporting ligand. An analysis of the temperature-dependent magnetic susceptibility data for <b>3</b> reveals the presence of ferromagnetic exchange interactions between the Ni<sup>ii</sup> (<i>S</i> = 1) ions with a value for the magnetic exchange coupling constant <i>J</i> of +22 cm<sup>ā€“1</sup> (<b>H</b> = āˆ’2<i>J</i><b>S</b><sub>1</sub><b>S</b><sub>2</sub>). These results are additionally supported by DFT (density functional theory) calculations

    Azide Binding Controlled by Steric Interactions in Second Sphere. Synthesis, Crystal Structure, and Magnetic Properties of [Ni<sup>II</sup><sub>2</sub>(L)Ā­(Ī¼<sub>1,1</sub>-N<sub>3</sub>)]Ā­[ClO<sub>4</sub>] (L = Macrocyclic N<sub>6</sub>S<sub>2</sub> Ligand)

    No full text
    The dinuclear Ni<sup>II</sup> complex [Ni<sub>2</sub>(L<sup>2</sup>)]Ā­[ClO<sub>4</sub>]<sub>2</sub> (<b>3</b>) supported by the 28-membered hexaaza-dithiophenolate macrocycle (L<sup>2</sup>)<sup>2ā€“</sup> binds the N<sub>3</sub><sup>ā€“</sup> ion specifically <i>end-on</i> yielding [Ni<sub>2</sub>(L<sup>2</sup>)Ā­(Ī¼<sub>1,1</sub>-N<sub>3</sub>)]Ā­[ClO<sub>4</sub>] (<b>7</b>) or [Ni<sub>2</sub>(L<sup>2</sup>)Ā­(Ī¼<sub>1,1</sub>-N<sub>3</sub>)]Ā­[BPh<sub>4</sub>] (<b>8</b>), while the previously reported complex [Ni<sub>2</sub>L<sup>1</sup>Ā­(Ī¼<sub>1,3</sub>-N<sub>3</sub>)]Ā­[ClO<sub>4</sub>] (<b>2</b>) of the 24-membered macrocycle (L<sup>1</sup>)<sup>2ā€“</sup> coordinates it in the <i>end-to-end</i> fashion. A comparison of the X-ray structures of <b>2</b>, <b>3</b>, and <b>7</b> reveals the form-selective binding of complex <b>3</b> to be a consequence of its preorganized, channel-like binding pocket, which accommodates the azide anion via repulsive CHĀ·Ā·Ā·Ļ€ interactions in the <i>end-on</i> mode. In contrast to [Ni<sub>2</sub>L<sup>1</sup>Ā­(Ī¼<sub>1,3</sub>-N<sub>3</sub>)]Ā­[ClO<sub>4</sub>] (<b>2</b>), which features a <i>S</i> = 0 ground state, [Ni<sub>2</sub>(L<sup>2</sup>)Ā­(Ī¼<sub>1,1</sub>-N<sub>3</sub>)]Ā­[BPh<sub>4</sub>] (<b>8</b>) has a <i>S</i> = 2 ground state that is attained by competing antiferromagnetic and ferromagnetic exchange interactions via the thiolato and azido bridges with a value for the magnetic exchange coupling constant <i>J</i> of 13 cm<sup>ā€“1</sup> (<b>H</b> = āˆ’2<i>JS</i><sub>1</sub><i>S</i><sub>2</sub>). These results are further substantiated by density functional theory calculations. The stability of the azido-bridged complex determined by isothermal titration calorimetry in MeCN/MeOH 1/1 v/v (log <i>K</i><sub>11</sub> = 4.88(4) at <i>I</i> = 0.1 M) lies in between those of the fluorido- (log <i>K</i><sub>11</sub> = 6.84(7)) and chlorido-bridged complexes (log <i>K</i><sub>11</sub> = 3.52(5)). These values were found to compare favorably well with the equilibrium constants derived at lower ionic strength (<i>I</i> = 0.01 M) by absorption spectrophotometry (log <i>K</i><sub>11</sub> = 5.20(1), 7.77(9), and 4.13(3) for N<sub>3</sub><sup>ā€“</sup>, F<sup>ā€“</sup>, and Cl<sup>ā€“</sup> respectively)

    Encapsulation of the 4ā€‘Mercaptobenzoate Ligand by Macrocyclic Metal Complexes: Conversion of a Metallocavitand to a Metalloligand

    No full text
    Complexation of the ambidentate ligand 4-mercaptobenzoate (4-SH-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>H, H<sub>2</sub>mba) by the macrocyclic complex [Ni<sub>2</sub>LĀ­(Ī¼-Cl)]Ā­ClO<sub>4</sub> (L<sup>2ā€“</sup> represents a 24-membered macrocyclic hexaazadithiophenolate ligand) has been examined. The monodeprotonated Hmba<sup>ā€“</sup> ligand reacts with the Ni<sub>2</sub> complex in a selective manner by substitution of the bridging chlorido ligand to produce Ī¼<sub>1,3</sub>-carboxylato-bridged complex [Ni<sub>2</sub>LĀ­(Hmba)]<sup>+</sup> (<b>2<sup>+</sup></b>), which can be isolated as an air-sensitive perchlorate (<b>2</b>ClO<sub>4</sub>) or tetraphenylborate (<b>2</b>BPh<sub>4</sub>) salt. The reactivity of the new mercaptobenzoate complex is reminiscent of that of a ā€œfreeā€ thiophenolate ligand. In the presence of air, <b>2</b>ClO<sub>4</sub> dimerizes via a disulfide bond to generate tetranuclear complex [{Ni<sub>2</sub>L}<sub>2</sub>(O<sub>2</sub>CC<sub>6</sub>H<sub>4</sub>S)<sub>2</sub>]<sup>2+</sup> (<b>3<sup>2+</sup></b>). The auration of <b>2</b>ClO<sub>4</sub> with [AuClĀ­(PPh<sub>3</sub>)], on the other hand, leads to monoaurated complex [Ni<sup>II</sup><sub>2</sub>LĀ­(mba)Ā­Au<sup>I</sup>PPh<sub>3</sub>]<sup>+</sup> (<b>4<sup>+</sup></b>). The bridging thiolate functions of the N<sub>6</sub>S<sub>2</sub> macrocycle are deeply buried and are unaffected/unreactive under these conditions. The complexes were fully characterized by electrospray ionization mass spectrometry, IR and UV/vis spectroscopy, density functional theory, cyclic voltammetry, and X-ray crystallography [for <b>3</b>(BPh<sub>4</sub>)<sub>2</sub> and <b>4</b>BPh<sub>4</sub>]. Temperature-dependent magnetization and susceptibility measurements reveal an <i>S</i> = 2 ground state that is attained by ferromagnetic coupling between the spins of the Ni<sup>II</sup> ions in <b>2</b>ClO<sub>4</sub> (<i>J</i> = +22.3 cm<sup>ā€“1</sup>) and <b>4</b>BPh<sub>4</sub> (<i>J</i> = +20.8 cm<sup>ā€“1</sup>; <i>H</i> = āˆ’2<i>JS</i><sub>1</sub><i>S</i><sub>2</sub>). Preliminary contact-angle and X-ray photoelectron spectroscopy measurements indicate that <b>2</b>ClO<sub>4</sub> interacts with gold surfaces

    Cavitands Incorporating a Lewis Acid Dinickel Chelate Function as Receptors for Halide Anions

    No full text
    The halide binding properties of the cavitand [Ni<sub>2</sub>(L<sup>Me2H4</sup>)]<sup>2+</sup> (<b>4</b>) are reported. Cavitand <b>4</b> exhibits a chelating N<sub>3</sub>NiĀ­(Ī¼-S)<sub>2</sub>NiN<sub>3</sub> moiety with two square-pyramidal Ni<sup>II</sup>N<sub>3</sub>S<sub>2</sub> units situated in an anion binding pocket of āˆ¼4 ƅ diameter formed by the organic backbone of the (L<sup>Me2H4</sup>)<sup>2ā€“</sup> macrocycle. The receptor reacts with fluoride, chloride (in MeCN/MeOH), and bromide (in MeCN) ions to afford an isostructural series of halogenido-bridged complexes [Ni<sub>2</sub>(L<sup>Me2H4</sup>)Ā­(Ī¼-Hal)]<sup>+</sup> (Hal = F<sup>ā€“</sup> (<b>5</b>), Cl<sup>ā€“</sup> (<b>6</b>), and Br<sup>ā€“</sup> (<b>7</b>)) featuring a N<sub>3</sub>NiĀ­(Ī¼-S)<sub>2</sub>(Ī¼-Hal)Ā­NiN<sub>3</sub> core structure. No reaction occurs with iodide or other polyatomic anions (ClO<sub>4</sub><sup>ā€“</sup>, NO<sub>3</sub><sup>ā€“</sup>, HCO<sub>3</sub><sup>ā€“</sup>, H<sub>2</sub>PO<sub>4</sub><sup>ā€“</sup>, HSO<sub>4</sub><sup>ā€“</sup>, SO<sub>4</sub><sup>2ā€“</sup>). The binding events are accompanied by discrete UVā€“vis spectral changes, due to a switch of the coordination geometry from square-pyramidal (N<sub>3</sub>S<sub>2</sub> donor set in <b>4</b>) to octahedral in the halogenido-bridged complexes (N<sub>3</sub>S<sub>2</sub>Hal donor environment in <b>5</b>ā€“<b>7</b>). In MeCN/MeOH (1/1 v/v) the log <i>K</i><sub>11</sub> values for the 1:1 complexes are 7.77(9) (F<sup>ā€“</sup>), 4.06(7) (Cl<sup>ā€“</sup>), and 2.0(1) (Br<sup>ā€“</sup>). X-ray crystallographic analyses for <b>4</b>(ClO<sub>4</sub>)<sub>2</sub>, <b>4</b>(I)<sub>2</sub>, <b>5</b>(F), <b>6</b>(ClO<sub>4</sub>), and <b>7</b>(Br) and computational studies reveal a significant increase of the intramolecular distance between two propylene groups at the cavity entrance upon going from F<sup>ā€“</sup> to I<sup>ā€“</sup> (for the DFT computed structure). In case of the receptor <b>4</b> and fluorido-bridged complex <b>5</b>, the corresponding distances are nearly identical. This indicates a high degree of preorganization of the [Ni<sub>2</sub>(L<sup>Me2H4</sup>)]<sup>2+</sup> receptor and a size fit mismatch of the receptor binding cavity for anions larger than F<sup>ā€“</sup>
    corecore