6,320 research outputs found

    Information transfer by quantum matterwave modulation

    Get PDF
    Classical communication schemes that exploit wave modulation are the basis of the information era. The transfer of information based on the quantum properties of photons revolutionized these modern communication techniques. Here we demonstrate that also matterwaves can be applied for information transfer and that their quantum nature provides a high level of security. Our technique allows transmitting a message by a non-trivial modulation of an electron matterwave in a biprism interferometer. The data is encoded by a Wien filter introducing a longitudinal shift between separated matterwave packets. The transmission receiver is a delay line detector performing a dynamic contrast analysis of the fringe pattern. Our method relies on the Aharonov-Bohm effect and has no light optical analog since it does not shift the phase of the electron interference. A passive eavesdropping attack will cause decoherence and terminating the data transfer. This is demonstrated by introducing a semiconducting surface that disturbs the quantum state by Coulomb interaction and reduces the contrast. We also present a key distribution protocol based on the quantum nature of the matterwaves that can reveal active eavesdropping

    Does Disability Insurance Receipt Discourage Work? Using Examiner Assignment to Estimate Causal Effects of SSDI Receipt

    Get PDF
    We present the first causal estimates of the effect of Social Security Disability Insurance benefit receipt on labor supply using all program applicants. We use new administrative data to match applications to disability examiners, and exploit variation in examiners’ allowance rates as an instrument for benefit receipt. We find that among the estimated 23% of applicants on the margin of program entry, employment would have been 28 percentage points higher had they not received benefits. The effect is heterogeneous, ranging from no effect for those with more severe impairments to 50 percentage points for entrants with relatively less severe impairments.

    Community Partnerships Newsletter March 2017

    Get PDF

    Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

    Full text link
    Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.Comment: laTeX, 9 figures, 32 page

    Stochastic fiber dynamics in a spatially semi-discrete setting

    Full text link
    We investigate a spatially discrete surrogate model for the dynamics of a slender, elastic, inextensible fiber in turbulent flows. Deduced from a continuous space-time beam model for which no solution theory is available, it consists of a high-dimensional second order stochastic differential equation in time with a nonlinear algebraic constraint and an associated Lagrange multiplier term. We establish a suitable framework for the rigorous formulation and analysis of the semi-discrete model and prove existence and uniqueness of a global strong solution. The proof is based on an explicit representation of the Lagrange multiplier and on the observation that the obtained explicit drift term in the equation satisfies a one-sided linear growth condition on the constraint manifold. The theoretical analysis is complemented by numerical studies concerning the time discretization of our model. The performance of implicit Euler-type methods can be improved when using the explicit representation of the Lagrange multiplier to compute refined initial estimates for the Newton method applied in each time step.Comment: 20 pages; typos removed, references adde
    • …
    corecore