428 research outputs found

    Delivering efficient liver-directed AAV-mediated gene therapy.

    Get PDF
    Adeno-associated virus vectors (AAV) have become the leading technology for liver-directed gene therapy. After the pioneering trials using AAV2 and AAV8 to treat haemophilia B, D’Avola et al. recently reported the first-in-human clinical trial of adeno-associated virus vector serotype 5 (AAV5) in acute intermittent porphyria (AIP). Treatment was reported as safe, but the main surrogate biomarkers of AIP, porphobilinogen (PBG) and delta-aminolevulinate (ALA) were unchanged. This lack of efficacy contrasts with results from the haemophilia B trial using AAV8 capsid by Nathwani et al., which showed a significant and long-lasting improvement of the clinical phenotype. Haemophilia B is an amenable target for successful gene therapy as raising expression of plasma factor IX (FIX) level above 1% can modify the phenotype from severe to moderate. Development of a variety of capsids for clinical application is useful to overcome pre-existing neutralising antibodies. The differences in cell-specific transduction by different AAV serotypes are primarily owing to specificities in cellular uptake or post cell-entry processing. Indeed AAV5 presents several theoretical advantages as an alternative capsid to AAV8 for liver-directed gene therapy: suitable liver tropism, less off-target biodistribution, low seroprevalence in humans and minimal cross-reactivity with other serotypes

    Production and performance evaluation of biodiesel from Elaeis guineensis using natural snail shell-based heterogeneous catalyst: kinetics, modeling and optimisation by artificial neural network

    Get PDF
    This study presents an approach to produce biodiesel from Elaeis guineensis using natural heterogeneous catalysts derived from raw, calcined, and acid-activated forms of waste snail shells. The catalysts were thoroughly characterized using SEM, and process parameters were systematically evaluated during biodiesel production. Our results demonstrate a remarkable crop oil yield of 58.87%, with kinetic studies confirming second-order kinetics and activation energies of 43.70 kJ mol-1 and 45.70 kJ mol-1 for methylation and ethylation, respectively. SEM analysis identified the calcined catalyst as the most effective, exhibiting remarkable reusability for continuous reactions running up to five times. Moreover, the acid concentration from exhaust fumes yielded a low acid value (B100 0.0012 g dm-3), significantly lower than that of petroleum diesel, while the fuel properties and blends satisfied the ASTM standards. The sample-heavy metals were well within acceptable limits, confirming the quality and safety of the final product. Our modelling and optimization approach produced a remarkably low mean squared error (MSE) and a high coefficient of determination (R), providing strong evidence for the viability of this approach at an industrial scale. Our results represent a significant input in sustainable biodiesel production and underscore the enormous potential of natural heterogeneous catalysts derived from waste snail shells for achieving sustainable and environmentally friendly biodiesel production

    Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice.

    Full text link
    Previously, we used a lentiviral vector to deliver furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes using intervallic infusion in full flow occlusion (FFO), with resultant reversal of diabetes, restoration of glucose tolerance and pancreatic transdifferentiation (PT), due to the expression of beta (β)-cell transcription factors (β-TFs). The present study aimed to determine whether we could similarly reverse diabetes in the non-obese diabetic (NOD) mouse using an adeno-associated viral vector (AAV) to deliver INS-FUR ± the β-TF Pdx1 to the livers of diabetic mice. The traditional AAV8, which provides episomal expression, and the hybrid AAV8/piggyBac that results in transgene integration were used. Diabetic mice that received AAV8-INS-FUR became hypoglycaemic with abnormal intraperitoneal glucose tolerance tests (IPGTTs). Expression of β-TFs was not detected in the livers. Reversal of diabetes was not achieved in mice that received AAV8-INS-FUR and AAV8-Pdx1 and IPGTTs were abnormal. Normoglycaemia and glucose tolerance were achieved in mice that received AAV8/piggyBac-INS-FUR/FFO. Definitive evidence of PT was not observed. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat Type 1 diabetes (T1D). However, further development is required before the system can be used for gene therapy of T1D

    Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys

    Get PDF
    X-linked inherited ornithine transcarbamylase deficiency (OTCD) is the most common disorder affecting the liver-based urea cycle, a pathway enabling detoxification of nitrogen waste and endogenous arginine biosynthesis. Patients develop acute hyperammonemia leading to neurological sequelae or death despite the best-accepted therapy based on ammonia scavengers and protein-restricted diet. Liver transplantation is curative but associated with procedure-related complications and lifelong immunosuppression. Adeno-associated viral (AAV) vectors have demonstrated safety and clinical benefits in a rapidly growing number of clinical trials for inherited metabolic liver diseases. Engineered AAV capsids have shown promising enhanced liver tropism. Here, we conducted a good-laboratory practice-compliant investigational new drug-enabling study to assess the safety of intravenous liver-tropic AAVLK03 gene transfer of a human codon-optimized OTC gene. Juvenile cynomolgus monkeys received vehicle and a low and high dose of vector (2 Ă— 1012 and 2 Ă— 1013 vector genome (vg)/kg, respectively) and were monitored for 26 weeks for in-life safety with sequential liver biopsies at 1 and 13 weeks post-vector administration. Upon completion of monitoring, animals were euthanized to study vector biodistribution, immune responses, and histopathology. The product was well tolerated with no adverse clinical events, predominant hepatic biodistribution, and sustained supra-physiological OTC overexpression. This study supports the clinical deployment of intravenous AAVLK03 for severe OTCD

    Identification of PBX1 Target Genes in Cancer Cells by Global Mapping of PBX1 Binding Sites

    Get PDF
    PBX1 is a TALE homeodomain transcription factor involved in organogenesis and tumorigenesis. Although it has been shown that ovarian, breast, and melanoma cancer cells depend on PBX1 for cell growth and survival, the molecular mechanism of how PBX1 promotes tumorigenesis remains unclear. Here, we applied an integrated approach by overlapping PBX1 ChIP-chip targets with the PBX1-regulated transcriptome in ovarian cancer cells to identify genes whose transcription was directly regulated by PBX1. We further determined if PBX1 target genes identified in ovarian cancer cells were co-overexpressed with PBX1 in carcinoma tissues. By analyzing TCGA gene expression microarray datasets from ovarian serous carcinomas, we found co-upregulation of PBX1 and a significant number of its direct target genes. Among the PBX1 target genes, a homeodomain protein MEOX1 whose DNA binding motif was enriched in PBX1-immunoprecipicated DNA sequences was selected for functional analysis. We demonstrated that MEOX1 protein interacts with PBX1 protein and inhibition of MEOX1 yields a similar growth inhibitory phenotype as PBX1 suppression. Furthermore, ectopically expressed MEOX1 functionally rescued the PBX1-withdrawn effect, suggesting MEOX1 mediates the cellular growth signal of PBX1. These results demonstrate that MEOX1 is a critical target gene and cofactor of PBX1 in ovarian cancers

    Novel human liver-tropic AAV variants define transferable domains that markedly enhance the human tropism of AAV7 and AAV8

    Get PDF
    Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. Here, we report the bioengineering of a set of next-generation AAV vectors, named AAV-SYDs (where “SYD” stands for Sydney, Australia), with increased human hepato-tropism in a liver xenograft mouse model repopulated with primary human hepatocytes. We followed a two-step process that staggered directed evolution and domain-swapping approaches. Using DNA-family shuffling, we first mapped key AAV capsid regions responsible for efficient human hepatocyte transduction in vivo. Focusing on these regions, we next applied domain-swapping strategies to identify and study key capsid residues that enhance primary human hepatocyte uptake and transgene expression. Our findings underscore the potential of AAV-SYDs as liver gene therapy vectors and provide insights into the mechanism responsible for their enhanced transduction profile
    • …
    corecore