3 research outputs found

    Minimum Active Structure of Insulin-like Peptide 5

    No full text
    Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis. This peptide thus has considerable potential for the treatment of eating disorders, obesity, and/or diabetes. However, the synthesis of INSL5 is extremely challenging either by chemical or recombinant means. The A-chain is very poorly soluble and the B-chain is highly aggregating in nature which, together, makes their postsynthesis handling and purification very difficult. Given these difficulties, we have developed a highly active INSL5 analogue that has a much simpler structure with two disulfide bonds and is thus easier to assemble compared to native INSL5. This minimized peptide represents an attractive new mimetic for investigating the functional role of INSL5

    Dicarba α‑Conotoxin Vc1.1 Analogues with Differential Selectivity for Nicotinic Acetylcholine and GABA<sub>B</sub> Receptors

    No full text
    Conotoxins have emerged as useful leads for the development of novel therapeutic analgesics. These peptides, isolated from marine molluscs of the genus <i>Conus</i>, have evolved exquisite selectivity for receptors and ion channels of excitable tissue. One such peptide, α-conotoxin Vc1.1, is a 16-mer possessing an interlocked disulfide framework. Despite its emergence as a potent analgesic lead, the molecular target and mechanism of action of Vc1.1 have not been elucidated to date. In this paper we describe the regioselective synthesis of dicarba analogues of Vc1.1 using olefin metathesis. The ability of these peptides to inhibit acetylcholine-evoked current at rat α9α10 and α3β4 nicotinic acetylcholine receptors (nAChR) expressed in <i>Xenopus</i> oocytes has been assessed in addition to their ability to inhibit high voltage-activated (HVA) calcium channel current in isolated rat DRG neurons. Their solution structures were determined by NMR spectroscopy. Significantly, we have found that regioselective replacement of the native cystine framework with a dicarba bridge can be used to selectively tune the cyclic peptide’s innate biological activity for one receptor over another. The 2,8-dicarba Vc1.1 isomer retains activity at γ-aminobutyric acid (GABA<sub>B</sub>) G protein-coupled receptors, whereas the isomeric 3,16-dicarba Vc1.1 peptide retains activity at the α9α10 nAChR subtype. These singularly acting analogues will enable the elucidation of the biological target responsible for the peptide’s potent analgesic activity

    Dicarba Analogues of α‑Conotoxin RgIA. Structure, Stability, and Activity at Potential Pain Targets

    No full text
    α-Conotoxin RgIA is both an antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype and an inhibitor of high-voltage-activated N-type calcium channel currents. RgIA has therapeutic potential for the treatment of pain, but reduction of the disulfide bond framework under physiological conditions represents a potential liability for clinical applications. We synthesized four RgIA analogues that replaced native disulfide pairs with nonreducible dicarba bridges. Solution structures were determined by NMR, activity assessed against biological targets, and stability evaluated in human serum. [3,12]-Dicarba analogues retained inhibition of ACh-evoked currents at α9α10 nAChRs but not N-type calcium channel currents, whereas [2,8]-dicarba analogues displayed the opposite pattern of selectivity. The [2,8]-dicarba RgIA analogues were effective in HEK293 cells stably expressing human Ca<sub>v</sub>2.2 channels and transfected with human GABA<sub>B</sub> receptors. The analogues also exhibited improved serum stability over the native peptide. These selectively acting dicarba analogues may represent mechanistic probes to explore analgesia-related biological receptors
    corecore