4 research outputs found

    Numerical Analysis of IC Engine Operation with High-Pressure Hydrogen Injection

    Get PDF
    The limited quantities of oil reserves and the exhaust emissions from IC engines have become a threat to the existence of IC engines. One of the best solutions to the problem is the use of alternative fuels. Hydrogen is an alternative fuel that is called a fuel of the future. A disadvantage of hydrogen is its high combustion speed. Experimental results were used for the determination of inputs for numerical analysis. The numerical analysis is performed for a 3D model of the engine in order to determine the working parameters of the engine (pressure and temperature). The main goal of this study is to investigate a possibility of modifying the diesel engine so that it can run on hydrogen. It was found that in such an engine the greatest loads occur in the combustion chamber; thus, the vital parts of the engine are protected. Therefore, a mechanical analysis of the combustion chamber was performed (calculation of stresses and deformations). The obtained results are encouraging because they indicate that by applying the presented solution a much cheaper technology than the modern diesel engine systems is made possible

    Experimental determination of double vibe function parameters in diesel engines with biodiesel

    Get PDF
    A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve

    Aspects of volumetric efficiency measurement for reciprocating engines

    Get PDF
    The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined
    corecore