11 research outputs found

    Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector

    No full text
    The effectiveness of a flat-plate solar collector was studied by using SiO2, Al2O3, Graphene, and graphene nanoplatelets nanofluids with distilled water as the working fluids. The energy efficiency was theoretically compared using MATLAB programming. The prepared carbon and metallic oxides nanomaterials were structurally and morphologically characterized via field emission scanning electron microscope. The study was conducted under different operating conditions such as different volume fractions (0.25%, 0.5%, 0.75% and 1%), fluid mass flow rate (0.0085, 0.017, and 0.0255 kg/s), input temperatures (30, 40, and 50 °C), and solar irradiance (500, 750, and 1000 W/m2). Nanofluids showed better thermophysical properties compared to standard working fluids. With the addition of the nanofluids SiO2, Al2O3, Gr and GNPs to the FPSC the highest efficiency of 64.45%, 67.03%, 72.45%, and 76.56% respectively was reached. The results suggested that nanofluids made from carbon nanostructures and metallic oxides can be used in solar collectors to increase the parameters of heat absorbed/loss compared to water only usage.Validerad;2020;Nivå 2;2020-05-27 (johcin)</p

    Frictional pressure drop and cost savings for graphene nanoplatelets nanofluids in turbulent flow environments

    No full text
    Covalent-functionalized graphene nanoplatelets (CF-GNPs) inside a circular heated-pipe and the subsequent pressure decrease loss within a fully developed turbulent flow were discussed in this research. Four samples of nanofluids were prepared and investigated in the ranges of 0.025 wt.%, 0.05 wt.%, 0.075 wt.%, and 0.1 wt.%. Different tools such as field emission scanning electron microscopy (FE-SEM), ultraviolet-visible-spectrophotometer (UV-visible), energy-dispersive X-ray spectroscopy (EDX), zeta potential, and nanoparticle sizing were used for the data preparation. The thermophysical properties of the working fluids were experimentally determined using the testing conditions established via computational fluid dynamic (CFD) simulations that had been designed to solve governing equations involving distilled water (DW) and nanofluidic flows. The average error between the numerical solution and the Blasius formula was ~4.85%. Relative to the DW, the pressure dropped by 27.80% for 0.025 wt.%, 35.69% for 0.05 wt.%, 41.61% for 0.075 wt.%, and 47.04% for 0.1 wt.%. Meanwhile, the pumping power increased by 3.8% for 0.025 wt.%, 5.3% for 0.05 wt.%, 6.6% for 0.075%, and 7.8% for 0.1 wt.%. The research findings on the cost analysis demonstrated that the daily electric costs were USD 214, 350, 416, 482, and 558 for DW of 0.025 wt.%, 0.05 wt.%, 0.075 wt.%, and 0.1 wt.%, respectively

    Thermal effectiveness of solar collector using Graphene nanostructures suspended in ethylene glycol–water mixtures

    No full text
    Flat plate solar collectors (FPSCs) are the most often used as solar collectors due to their easiness of installation and usage. The current research investigates the energy efficiency of FPSC using different mass concentration with varied base fluids containing Graphene nanofluids (T-Gr). Mass concentration of 0.1%-wt., 0.075%-wt., 0.050%-wt. and 0.025%-wt. were mixed with ethylene glycol (EG) and distilled water (DW) in different rations. The operating conditions were volumetric flowrate (1.5, 1 and 0.5) LPM 50 °C-input fluid temperature and 800 W/m2-global solar irradiation. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) were used to synthesize the thermally treated nanomaterial. The theoretical investigation indicated that using T-Gr nanosuspensions increased the FPSC efficiency in comparison with the host fluid for all examined mass concentrations and volumetric flowrates. In quantitative terms, the maximum thermal effectiveness improvement for the EG, (DW:70 + EG:30) and DW:EG (DW:50 + EG:50) and using flowrates of (1.5, 1 and 0.5) LPM were 12.54%, 12.46% and 12.48%. In addition, the research results pointed that the essential parameters (i.e., loss energy (FRUL)) and gain energy (FR (τα)) of the T-Gr nanofluids were increased significantly

    State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations

    No full text
    Dam and powerhouse operation sustainability is a major concern from the hydraulic engineering perspective. Powerhouse operation is one of the main sources of vibrations in the dam structure and hydropower plant; thus, the evaluation of turbine performance at different water pressures is important for determining the sustainability of the dam body. Draft tube turbines run under high pressure and suffer from connection problems, such as vibrations and pressure fluctuation. Reducing the pressure fluctuation and minimizing the principal stress caused by undesired components of water in the draft tube turbine are ongoing problems that must be resolved. Here, we conducted a comprehensive review of studies performed on dams, powerhouses, and turbine vibration, focusing on the vibration of two turbine units: Kaplan and Francis turbine units. The survey covered several aspects of dam types (e.g., rock and concrete dams), powerhouse analysis, turbine vibrations, and the relationship between dam and hydropower plant sustainability and operation. The current review covers the related research on the fluid mechanism in turbine units of hydropower plants, providing a perspective on better control of vibrations. Thus, the risks and failures can be better managed and reduced, which in turn will reduce hydropower plant operation costs and simultaneously increase the economical sustainability. Several research gaps were found, and the literature was assessed to provide more insightful details on the studies surveyed. Numerous future research directions are recommended.Validerad;2020;Nivå 2;2020-04-16 (alebob)</p

    Hybridized Deep Learning Model for Perfobond Rib Shear Strength Connector Prediction

    No full text
    Accurate and reliable prediction of Perfobond Rib Shear Strength Connector (PRSC) is considered as a major issue in the structural engineering sector. Besides, selecting the most significant variables that have a major influence on PRSC in every important step for attaining economic and more accurate predictive models, this study investigates the capacity of deep learning neural network (DLNN) for shear strength prediction of PRSC. The proposed DLNN model is validated against support vector regression (SVR), artificial neural network (ANN), and M5 tree model. In the second scenario, a comparable AI model hybridized with genetic algorithm (GA) as a robust bioinspired optimization approach for optimizing the related predictors for the PRSC is proposed. Hybridizing AI models with GA as a selector tool is an attempt to acquire the best accuracy of predictions with the fewest possible related parameters. In accordance with quantitative analysis, it can be observed that the GA-DLNN models required only 7 input parameters and yielded the best prediction accuracy with highest correlation coefficient (R = 0.96) and lowest value root mean square error (RMSE = 0.03936 KN). However, the other comparable models such as GA-M5Tree, GA-ANN, and GA-SVR required 10 input parameters to obtain a relatively acceptable level of accuracy. Employing GA as a feature parameter selection technique improves the precision of almost all hybrid models by optimally removing redundant variables which decrease the efficiency of the model

    Energy and cost management of different mixing ratios and morphologies on mono and hybrid nanofluids in collector technologies

    No full text
    The flat-plate solar collector (FPSC) three-dimensional (3D) model was used to numerically evaluate the energy and economic estimates. A laminar flow with 500 ≤ Re ≤ 1900, an inlet temperature of 293 K, and a solar flux of 1000 W/m2 were assumed the operating conditions. Two mono nanofluids, CuO-DW and Cu-DW, were tested with different shapes (Spherical, Cylindrical, Platelets, and Blades) and different volume fractions. Additionally, hybrid nanocomposites from CuO@Cu/DW with different shapes (Spherical, Cylindrical, Platelets and Blades), different mixing ratios (60% + 40%, 50% + 50% and 40% + 60%) and different volume fractions (1 volume%, 2 volume%, 3 volume% and 4 volume%) were compared with mono nanofluids. At 1 volume% and Re = 1900, CuO-Platelets demonstrated the highest pressure drop (33.312 Pa). CuO-Platelets achieved the higher thermal enhancement with (8.761%) at 1 vol.% and Re = 1900. CuO-Platelets reduced the size of the solar collector by 25.60%. Meanwhile, CuO@Cu-Spherical (40:60) needed a larger collector size with 16.69% at 4 vol.% and Re = 1900. CuO-Platelets with 967.61, CuO – Cylindrical with 976.76, Cu Platelets with 983.84, and Cu-Cylindrical with 992.92 presented the lowest total cost. Meanwhile, the total cost of CuO – Cu – Platelets with 60:40, 50:50, and 40:60 was 994.82, 996.18, and 997.70, respectively.Validerad;2023;Nivå 2;2023-01-25 (joosat);Licens fulltext: CC BY License</p

    Development of Advanced Computer Aid Model for Shear Strength of Concrete Slender Beam Prediction

    No full text
    High-strength concrete (HSC) is highly applicable to the construction of heavy structures. However, shear strength (Ss) determination of HSC is a crucial concern for structure designers and decision makers. The current research proposes the novel models based on the combination of adaptive neuro-fuzzy inference system (ANFIS) with several meta-heuristic optimization algorithms, including ant colony optimizer (ACO), differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO), to predict the Ss of HSC slender beam. The proposed models were constructed using several input combinations incorporating several related dimensional parameters such as effective depth of beam (d), shear span (a), maximum size of aggregate (ag), compressive strength of concrete (fc), and percentage of tension reinforcement (ρ). To assess the impact of the non-homogeneity of the dataset on the prediction result accuracy, two possible modeling scenarios, (i) non-processed (initial) dataset (NP) and (ii) pre-processed dataset (PP), are inspected by several performance indices. The modeling results demonstrated that ANFIS-PSO hybrid model attained the best prediction accuracy over the other models and for the pre-processed input parameters. Several uncertainty analyses were examined (i.e., model, variables, and data), and results indicated predicting the HSC shear strength was more sensitive to the model structure uncertainty than the input parameters.Validerad;2020;Nivå 2;2020-06-17 (alebob)</p

    Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method

    No full text
    This study aims to develop an adaptive mesh refinement (AMR) algorithm combined with Cut-Cell IBM using two-stage pressure–velocity corrections for thin-object FSI problems. To achieve the objective of this study, the AMR-immersed boundary method (AMR-IBM) algorithm discretizes and solves the equations of motion for the flow that involves rigid thin structures boundary layer at the interface between the structure and the fluid. The body forces are computed in proportion to the fraction of the solid volume in the IBM fluid cells to incorporate fluid and solid motions into the boundary. The corrections of the velocity and pressure is determined by using a novel simplified marker and cell scheme. The new developed AMR-IBM algorithm is validated using a benchmark data of fluid past a cylinder and the results show that there is good agreement under laminar flow. Simulations are conducted for three test cases with the purpose of demonstration the accuracy of the AMR-IBM algorithm. The validation confirms the robustness of the new algorithms in simulating flow characteristics in the boundary layers of thin structures. The algorithm is performed on a staggered grid to simulate the fluid flow around thin object and determine the computational cost.Validerad;2019;Nivå 2;2019-08-13 (johcin)</p

    Heat transfer and hydrodynamic properties using different metal-oxide nanostructures in horizontal concentric annular tube : An optimization study

    No full text
    Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k–ε turbulence model for the flow range 1 × 104 ≤ Re ≥ 24 × 103. A wide range of parameters like different nanomaterials (Al2O3, CuO, SiO2 and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.5, 1 and 2) and different aspect ratios (AR) (1.5, 2, 2.5 and 3) were examined. Also, the effect of inner cylinder rotation was discussed. An experiment was conducted out using a field-emission scanning electron microscope (FE-SEM) to characterize metallic oxides in spherical morphologies. Nano-platelet particles showed the best enhancements in heat transfer properties, followed by nano-cylinders, nano-bricks, nano-blades, and nano-spheres. The maximum heat transfer enhancement was found in SiO2, followed by ZnO, CuO, and Al2O3, in that order. Meanwhile, the effect of the HFR parameter was insignificant. At Re = 24,000, the inner wall rotation enhanced the heat transfer about 47.94%, 43.03%, 42.06% and 39.79% for SiO2, ZnO, CuO and Al2O3, respectively. Moreover, the AR of 2.5 presented the higher heat transfer improvement followed by 3, 2, and 1.5

    Thermal and Hydraulic Performances of Carbon and Metallic Oxides-Based Nanomaterials

    No full text
    For companies, notably in the realms of energy and power supply, the essential requirement for highly efficient thermal transport solutions has become a serious concern. Current research highlighted the use of metallic oxides and carbon-based nanofluids as heat transfer fluids. This work examined two carbon forms (PEG@GNPs & PEG@TGr) and two types of metallic oxides (Al2O3 & SiO2) in a square heated pipe in the mass fraction of 0.1 wt.%. Laboratory conditions were as follows: 6401 ≤ Re ≤ 11,907 and wall heat flux = 11,205 W/m2. The effective thermal–physical and heat transfer properties were assessed for fully developed turbulent fluid flow at 20–60 °C. The thermal and hydraulic performances of nanofluids were rated in terms of pumping power, performance index (PI), and performance evaluation criteria (PEC). The heat transfer coefficients of the nanofluids improved the most: PEG@GNPs = 44.4%, PEG@TGr = 41.2%, Al2O3 = 22.5%, and SiO2 = 24%. Meanwhile, the highest augmentation in the Nu of the nanofluids was as follows: PEG@GNPs = 35%, PEG@TGr = 30.1%, Al2O3 = 20.6%, and SiO2 = 21.9%. The pressure loss and friction factor increased the highest, by 20.8–23.7% and 3.57–3.85%, respectively. In the end, the general performance of nanofluids has shown that they would be a good alternative to the traditional working fluids in heat transfer requests
    corecore