12 research outputs found

    A novel surrogate-assisted evolutionary algorithm applied to partition-based ensemble learning

    No full text
    We propose a novel surrogate-assisted Evolutionary Algorithm for solving expensive combinatorial optimization problems. We integrate a surrogate model, which is used for fitness value estimation, into a state-of-the-art P3-like variant of the Gene-Pool Optimal Mixing Algorithm (GOMEA) and adapt the resulting algorithm for solving non-binary combinatorial problems. We test the proposed algorithm on an ensemble learning problem. Ensembling several models is a common Machine Learning technique to achieve better performance. We consider ensembles of several models trained on disjoint subsets of a dataset. Finding the best dataset partitioning is naturally a combinatorial non-binary optimization problem. Fitness function evaluations can be extremely expensive if complex models, such as Deep Neural Networks, are used as learners in an ensemble. Therefore, the number of fitness function evaluations is typically limited, necessitating expensive optimization techniques. In our experiments we use five classification datasets from the OpenML-CC18 benchmark and Support-vector Machines as learners in an ensemble. The proposed algorithm demonstrates better performance than alternative approaches, including Bayesian optimization algorithms. It manages to find better solutions using just several thousand fitness function evaluations for an ensemble learning problem with up to 500 variables. Algorithmic

    Heed the noise in performance evaluations in neural architecture search

    No full text
    Neural Architecture Search (NAS) has recently become a topic of great interest. However, there is a potentially impactful issue within NAS that remains largely unrecognized: noise. Due to stochastic factors in neural network initialization, training, and the chosen train/validation dataset split, the performance evaluation of a neural network architecture, which is often based on a single learning run, is also stochastic. This may have a particularly large impact if a dataset is small. We therefore propose to reduce this noise by evaluating architectures based on average performance over multiple network training runs using different random seeds and cross-validation. We perform experiments for a combinatorial optimization formulation of NAS in which we vary noise reduction levels. We use the same computational budget for each noise level in terms of network training runs, i.e., we allow less architecture evaluations when averaging over more training runs. Multiple search algorithms are considered, including evolutionary algorithms which generally perform well for NAS. We use two publicly available datasets from the medical image segmentation domain where datasets are often limited and variability among samples is often high. Our results show that reducing noise in architecture evaluations enables finding better architectures by all considered search algorithms.Algorithmic

    Evolutionary neural cascade search across supernetworks

    No full text
    To achieve excellent performance with modern neural networks, having the right network architecture is important. Neural Architecture Search (NAS) concerns the automatic discovery of task-specific network architectures. Modern NAS approaches leverage super-networks whose subnetworks encode candidate neural network architectures. These subnetworks can be trained simultaneously, removing the need to train each network from scratch, thereby increasing the efficiency of NAS. A recent method called Neural Architecture Transfer (NAT) further improves the efficiency of NAS for computer vision tasks by using a multi-objective evolutionary algorithm to find high-quality subnetworks of a supernetwork pretrained on ImageNet. Building upon NAT, we introduce ENCAS - - Evolutionary Neural Cascade Search. ENCAS can be used to search over multiple pretrained supernetworks to achieve a trade-off front of cascades of different neural network architectures, maximizing accuracy while minimizing FLOPs count. We test ENCAS on common computer vision benchmarks (CIFAR-10, CIFAR-100, ImageNet) and achieve Pareto dominance over previous state-of-the-art NAS models up to 1.5 GFLOPs. Additionally, applying ENCAS to a pool of 518 publicly available ImageNet classifiers leads to Pareto dominance in all computation regimes and to increasing the maximum accuracy from 88.6% to 89.0%, accompanied by an 18% decrease in computation effort from 362 to 296 GFLOPs. Algorithmic

    Machine learning for automatic construction of pediatric abdominal phantoms for radiation dose reconstruction

    Get PDF
    The advent of Machine Learning (ML) is proving extremely beneficial in many healthcare applications. In pediatric oncology, retrospective studies that investigate the relationship between treatment and late adverse effects still rely on simple heuristics. To capture the effects of radiation treatment, treatment plans are typically simulated on virtual surrogates of patient anatomy called phantoms. Currently, phantoms are built to represent categories of patients based on reasonable yet simple criteria. This often results in phantoms that are too generic to accurately represent individual anatomies. We present a novel approach that combines imaging data and ML to build individualized phantoms automatically. We design a pipeline that, given features of patients treated in the pre-3D planning era when only 2D radiographs were available, as well as a database of 3D Computed Tomography (CT) imaging with organ segmentations, uses ML to predict how to assemble a patient-specific phantom. Using 60 abdominal CTs of pediatric patients between 2 to 6 years of age, we find that our approach delivers significantly more representative phantoms compared to using current phantom building criteria, in terms of shape and location of two considered organs (liver and spleen), and shape of the abdomen. Furthermore, as interpretability is often central to trust ML models in medical contexts, among other ML algorithms we consider the Gene-pool Optimal Mixing Evolutionary Algorithm for Genetic Programming (GP-GOMEA), that learns readable mathematical expression models. We find that the readability of its output does not compromise prediction performance as GP-GOMEA delivered the best performing models.Algorithmic

    Solving multi-structured problems by introducing linkage kernels into GOMEA

    Get PDF
    Model-Based Evolutionary Algorithms (MBEAs) can be highly scalable by virtue of linkage (or variable interaction) learning. This requires, however, that the linkage model can capture the exploitable structure of a problem. Usually, a single type of linkage structure is attempted to be captured using models such as a linkage tree. However, in practice, problems may exhibit multiple linkage structures. This is for instance the case in multi-objective optimization when the objectives have different linkage structures. This cannot be modelled sufficiently well when using linkage models that aim at capturing a single type of linkage structure, deteriorating the advantages brought by MBEAs. Therefore, here, we introduce linkage kernels, whereby a linkage structure is learned for each solution over its local neighborhood. We implement linkage kernels into the MBEA known as GOMEA that was previously found to be highly scalable when solving various problems. We further introduce a novel benchmark function called Best-of-Traps (BoT) that has an adjustable degree of different linkage structures. On both BoT and a worst-case scenario-based variant of the well-known MaxCut problem, we experimentally find a vast performance improvement of linkage-kernel GOMEA over GOMEA with a single linkage tree as well as the MBEA known as DSMGA-II. Algorithmic

    Machine learning for the prediction of pseudorealistic pediatric abdominal phantoms for radiation dose reconstruction

    No full text
    Purpose: Current phantoms used for the dose reconstruction of long-term childhood cancer survivors lack individualization. We design a method to predict highly individualized abdominal three-dimensional (3-D) phantoms automatically. Approach: We train machine learning (ML) models to map (2-D) patient features to 3-D organ-at-risk (OAR) metrics upon a database of 60 pediatric abdominal computed tomographies with liver and spleen segmentations. Next, we use the models in an automatic pipeline that outputs a personalized phantom given the patient's features, by assembling 3-D imaging from the database. A step to improve phantom realism (i.e., avoid OAR overlap) is included. We compare five ML algorithms, in terms of predicting OAR left-right (LR), anterior-posterior (AP), inferior-superior (IS) positions, and surface Dice-Sørensen coefficient (sDSC). Furthermore, two existing human-designed phantom construction criteria and two additional control methods are investigated for comparison. Results: Different ML algorithms result in similar test mean absolute errors: ∼8 mm for liver LR, IS, and spleen AP, IS; ∼5 mm for liver AP and spleen LR; ∼80 % for abdomen sDSC; and ∼60 % to 65% for liver and spleen sDSC. One ML algorithm (GP-GOMEA) significantly performs the best for 6/9 metrics. The control methods and the human-designed criteria in particular perform generally worse, sometimes substantially (+5-mm error for spleen IS,-10 % sDSC for liver). The automatic step to improve realism generally results in limited metric accuracy loss, but fails in one case (out of 60). Conclusion: Our ML-based pipeline leads to phantoms that are significantly and substantially more individualized than currently used human-designed criteria.Algorithmic

    Evolvability degeneration in multi-objective genetic programming for symbolic regression

    Get PDF
    Genetic programming (GP) is one of the best approaches today to discover symbolic regression models. To find models that trade off accuracy and complexity, the non-dominated sorting genetic algorithm II (NSGA-II) is widely used. Unfortunately, it has been shown that NSGA-II can be inefficient: in early generations, low-complexity models over-replicate and take over most of the population. Consequently, studies have proposed different approaches to promote diversity. Here, we study the root of this problem, in order to design a superior approach. We find that the over-replication of low complexity-models is due to a lack of evolvability, i.e., the inability to produce offspring with improved accuracy. We therefore extend NSGA-II to track, over time, the evolvability of models of different levels of complexity. With this information, we limit how many models of each complexity level are allowed to survive the generation. We compare this new version of NSGA-II, evoNSGA-II, with the use of seven existing multi-objective GP approaches on ten widely-used data sets, and find that evoNSGA-II is equal or superior to using these approaches in almost all comparisons. Furthermore, our results confirm that evoNSGA-II behaves as intended: models that are more evolvable form the majority of the population. Code: https://github.com/dzhliu/evoNSGA-II Algorithmic

    Het monitoren van bandenconditie

    No full text
    Dit rapport beschrijft een onderzoek naar het monitoren van bandenconditie. Dit wordt gedaan door het meten van tenminste de grootheden bandendruk en bandentemperatuur. Daarnaast is kennis over de resterende levensduur van de band gewenst. Hiervoor is de rubberdikte als maatstaf genomen. De rubberdikte vormt de basis van een model dat op basis van een aantal parameters een voorspelling doet over de resterende levensduur. Het onderzoek bestaat inhoudelijk uit vier delen. De eerste drie delen beschrijven respectievelijk de systemen voor het meten van de drie grootheden rubberdikte, temperatuur en luchtdruk. Het vierde deel beschrijft het model dat met de gegevens van de systemen een voorspelling kan doen. Alle delen hanteren dezelfde werkwijze. Allereerst wordt literatuuronderzoek gedaan, waarna als tweede voor druk en temperatuur een combinatie van bestaande meetmethoden de sensor kunnen vormen. Voor rubberdikte wordt gekeken naar een nieuwe meetmethode. Het model omvat een programma dat de meetwaarden weergeeft.Microelectronics & Computer EngineeringElectrical Engineering, Mathematics and Computer Scienc

    Mixed-Block Neural Architecture Search for Medical Image Segmentation

    No full text
    Deep Neural Networks (DNNs) have the potential for making various clinical procedures more time-efficient by automating medical image segmentation. Due to their strong, in some cases human-level, performance, they have become the standard approach in this field. The design of the best possible medical image segmentation DNNs, however, is task-specific. Neural Architecture Search (NAS), i.e., the automation of neural network design, has been shown to have the capability to outperform manually designed networks for various tasks. However, the existing NAS methods for medical image segmentation have explored a quite limited range of types of DNN architectures that can be discovered. In this work, we propose a novel NAS search space for medical image segmentation networks. This search space combines the strength of a generalised encoder-decoder structure, well known from U-Net, with network blocks that have proven to have a strong performance in image classification tasks. The search is performed by looking for the best topology of multiple cells simultaneously with the configuration of each cell within, allowing for interactions between topology and cell-level attributes. From experiments on two publicly available datasets, we find that the networks discovered by our proposed NAS method have better performance than well-known handcrafted segmentation networks, and outperform networks found with other NAS approaches that perform only topology search, and topology-level search followed by cell-level search.Algorithmic
    corecore