133 research outputs found

    The Swift X-ray Telescope Cluster Survey III: Cluster Catalog from 2005-2012 Archival Data

    Get PDF
    We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 to 2012, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20 degree to avoid high HI column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ~3000 useful fields covering a total solid angle of ~400 degree^2. We identify extended source candidates in the soft-band (0.5-2keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7E-15 erg/cm^2/s in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and SZ catalogs of clusters. We find that 137 sources have been previously identified as clusters, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.Comment: 41 pages, 16 figures, 3 tables, published on ApJS in Jan 201

    Amorphous WO3 as transparent conductive oxide in the near-IR

    Get PDF
    The demand for transparent conductive films (TCFs) is dramatically increasing. In this work tungsten oxide (WO3-x) is studied as a possible option additional to the existed TCFs. We introduce WO3-x thin films fabricated by a non-reactive magnetron RF-sputtering process at room temperature, followed by thermal annealing in dry air. Films are characterized morphologically, structurally, electrically, optically, and dielectrically. Amorphous WO3-x thin films are shown to be ntype conductive while the transparency extends to the near-IR. By evaluating a figure of merit for transparent-conductive performance and comparing to some most-widely used TCFs, WO3-x turns out to outperform in the near-IR optical range

    A Swift view on IGR J19149+1036

    Get PDF
    IGR J19149+1036 is a high-mass X-ray binary detected by INTEGRAL in 2011 in the hard X-ray domain. We have analysed the Burst Alert Telescope (BAT) survey data of the first 103 months of the Swift mission detecting this source at a significance level of ̃30 standard deviations. The timing analysis on the long-term BAT light curve reveals the presence of a strong sinusoidal intensity modulation of 22.25 ± 0.05 d, that we interpret as the orbital period of this binary system. A broad-band (0.3-150 keV) spectral analysis was performed combining the BAT spectrum and the X-Ray Telescope (XRT) spectra from the pointed follow-up observations. The spectrum is adequately modelled with an absorbed power law with a high-energy cutoff at ̃24 keV and an absorption cyclotron feature at ̃31 keV. Correcting for the gravitational redshift, the inferred magnetic field at the neutron star surface is Bsurf ̃ 3.6 × 1012 G

    The Swift X-ray flaring afterglow of GRB 050607

    Get PDF
    The unique capability of the Swift satellite to perform a prompt and autonomous slew to a newly detected Gamma-Ray Burst (GRB) has yielded the discovery of interesting new properties of GRB X-ray afterglows, such as the steep early lightcurve decay and the frequent presence of flares detected up to a few hours after the GRB trigger. We present observations of GRB 050607, the fourth case of a GRB discovered by Swift with flares superimposed on the overall fading X-ray afterglow. The flares of GRB 050607 were not symmetric as in previously reported cases, showing a very steep rise and a shallower decay, similar to the Fast Rise, Exponential Decay that are frequently observed in the gamma-ray prompt emission. The brighter flare had a flux increase by a factor of approximately 25,peaking for 30 seconds at a count rate of approximately 30 counts s-1, and it presented hints of addition short time scale activity during the decay phase. There is evidence of spectral evolution during the flares. In particular, at the onset of the flares the observed emission was harder, with a gradual softening as each flare decayed. The very short time scale and the spectral variability during the flaring activity are indicators of possible extended periods of energy emission by the GRB central engine. The flares were followed by a phase of shallow decay, during which the forward shock was being refreshed by a long-lived central engine or by shells of lower Lorentz factors, and by a steepening after approximately 12 ks to a decay slope considered typical of X-ray afterglows.Comment: 23 pages, 5 figures, Accepted by the Astrophysical Journa

    Swift XRT Observations of the Afterglow of XRF 050416A

    Full text link
    Swift discovered XRF 050416A with the BAT and began observing it with its narrow field instruments only 64.5 s after the burst onset. Its very soft spectrum classifies this event as an X-ray flash. The afterglow X-ray emission was monitored up to 74 days after the burst. The X-ray light curve initially decays very fast, subsequently flattens and eventually steepens again, similar to many X-ray afterglows. The first and second phases end about 172 and 1450 s after the burst onset, respectively. We find evidence of spectral evolution from a softer emission with photon index Gamma ~ 3.0 during the initial steep decay, to a harder emission with Gamma ~ 2.0 during the following evolutionary phases. The spectra show intrinsic absorption in the host galaxy. The consistency of the initial photon index with the high energy BAT photon index suggests that the initial phase of the X-ray light curve may be the low-energy tail of the prompt emission. The lack of jet break signatures in the X-ray afterglow light curve is not consistent with empirical relations between the source rest-frame peak energy and the collimation-corrected energy of the burst. The standard uniform jet model can give a possible description of the XRF 050416A X-ray afterglow for an opening angle larger than a few tens of degrees, although numerical simulations show that the late time decay is slightly flatter than expected from on-axis viewing of a uniform jet. A structured Gaussian-type jet model with uniform Lorentz factor distribution and viewing angle outside the Gaussian core is another possibility, although a full agreement with data is not achieved with the numerical models explored.Comment: Accepted for publication on ApJ; replaced with revised version: part of the discussion moved in an appendix; 11 pages, 6 figures; abstract shortened for posting on astro-p

    An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015

    Get PDF
    How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of ∼1.7 × 1011 G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time
    corecore