11 research outputs found
A New Proposal Of Cellulosic Ethanol To Boost Sugarcane Biorefineries: Techno-economic Evaluation
Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction). Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production. © 2014 Juliana Q. Albarelli et al.2014Hofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: Energy and non-energy consumption (2012) Biomass and Bioenergy, 46, pp. 564-573. , 10.1016/j.biombioe.2012.06.038http://www.bioetanol.org.br/, Ctbe Laboratório Nacional de Ciência e Tecnologia do Bioetanol, 2013http://www.ctcanavieira.com.br/, Ctc Centro de Tecnologia Canavieira, 2013http://www.codistil.com.br/, Dedini S/a Indústrias de Base 2013http://www.raizen.com/, Raízen 2013GraalBio Cellulosic Ethanol Production Project, , http://www.chemicals-technology.com/projects/graalbio-cellulosic-ethanol- project-brazil/, Graalbio Alagoas, Brazil, 2012Furlan, F.F., Costa, C.B.B., Fonseca, G.D.C., Soares, R.D.P., Secchi, A.R., Cruz, A.J.G.D., Giordano, R.D.C., Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling (2012) Computers & Chemical Engineering, 43, pp. 1-9. , 10.1016/j.compchemeng.2012.04.002Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Maciel Filho, R., Bonomi, A., Second generation ethanol in Brazil: Can it compete with electricity production? (2011) Bioresource Technology, 102 (19), pp. 8964-8971. , 2-s2.0-80052360654 10.1016/j.biortech.2011.06.098Albarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2013) Chemical Engineering Research and Design, , 10.1016/j.cherd.2013.11.016Ensinas, A.V., Codina, V., Marechal, F., Albarelli, J., Silva, M.A., Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant (2013) Chemical Engineering Transactions, 35, pp. 523-528Cardona, C.A., Quintero, J.A., Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives (2010) Bioresource Technology, 101 (13), pp. 4754-4766. , 2-s2.0-77949875829 10.1016/j.biortech.2009.10.097De Souza, A.P., Leite, D.C.C., Pattathil, S., Hahn, M.G., Buckeridge, M.S., Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production (2013) BioEnergy Research, 6 (2), pp. 564-579. , 10.1007/s12155-012-9268-1Chimenez, T.A., Gehlen, M.H., Marabezi, K., Curvelo, A.A.S., Characterization of sugarcane bagasse by autofluorescence microscopy (2014) Cellulose, 21 (1), pp. 653-664. , 10.1007/s10570-013-0135-9Silva, M.A., Maugeri, F., Costa, F.A., (2010) Processo de Produção de Etanol a Partir de Hidrólise Enzimática de Biomassa, Processo de Separação da Matéria-prima de Hidrólise e uso de Células de Parênquima para Obtenção de Etanol, , Brazil Patent PI 2010 1004486-8Almeida, E., Cortez, L.A.B., Silva, M.A., Sugarcane bagasse pneumatic classification as a technology for reducing costs on enzymatic hydrolysis process (2013) Proceedings of the 28th International Society of Sugar Cane Technologists Congress, 28. , São Paulo, BrazilAlmeida, E., Estudo da Separação Pneumática de Frações de Bagaço de Cana e Sua Influência Na Hidrólise Enzimática, , http://www.bibliotecadigital.unicamp.br/document/?code=000866267, 2012(2010) Aspen Plus: Users Manual V. 7.2, , AspenTechStarzak, M., Mathlouthi, M., Temperature dependence of water activity in aqueous solutions of sucrose (2006) Food Chemistry, 96 (3), pp. 346-370. , 2-s2.0-28544434762 10.1016/j.foodchem.2005.02.052Wooley, R.J., Putsche, V., (2010) Development of an Aspen Plus Physical Property Database for Biofuels Components, , http://www.nrel.gov/docs/fy99osti/26157.pdfPalacios-Bereche, R., Mosqueira-Salazar, K.J., Modesto, M., Ensinas, A.V., Nebra, S.A., Serra, L.M., Lozano, M.-A., Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane (2013) Energy, 62, pp. 46-61. , 10.1016/j.energy.2013.05.010Rein, P., (2007) Cane Sugar Engineering, , Berlin, Germany Dr. Albert Bartens KGEnsinas, A.V., Modesto, M., Nebra, S.A., Serra, L., Reduction of irreversibility generation in sugar and ethanol production from sugarcane (2009) Energy, 34 (5), pp. 680-688. , 2-s2.0-65549101138 10.1016/j.energy.2008.06.001Linnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , 1st Rugby, UK IChemECarrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme and Microbial Technology, 46 (2), pp. 64-73. , 2-s2.0-71249111390 10.1016/j.enzmictec.2009.10.016Neves, M.A., Kimura, T., Shimizu, N., Nakajima, M., (2007) State of the Art and Future Trends in Bioethanol Production, , Global Science Books Dynamic Biochemistry, Process Biotechnology and Molecular BiologyBaudel, H.M., Hidrólise Para Produção de Etanol, , http://www.inovacao.unicamp.br/etanol/report/ Hidrolise%20Baudel%20Pr%C3%A9%20Tratamento%20e%20Hidr%C3%B3lise.pdf, Workshop tecnológico sobre hidrólise de materiais lignocelulósicos, 2012Pellegrini, L.F., De Oliveira Júnior, S., Burbano, J.C., Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills (2010) Energy, 35 (2), pp. 1172-1180. , 2-s2.0-76449086288 10.1016/j.energy.2009.06.011Pippo, W.A., Luengo, C.A., Alberteris, L.A.M., Garzone, P., Cornacchia, G., Energy recovery from sugarcane-trash in the light of 2nd generation biofuels. Part 1: Current situation and environmental aspects (2011) Waste and Biomass Valorization, 2 (1), pp. 1-16. , 2-s2.0-79952344161 10.1007/s12649-010-9048-0Neto, A.E., (2009) Manual de Conservação e Reúso de Água Na Agroindústria Sucroenergética, , Brasilia, Brazil Agência Nacional de Águas (ANA)Preço Médio da Cana-de-açúcar, , http://www.unicadata.com.br/listagem.php?idMn=61, Unica 2012Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnology and Bioengineering, 109 (4), pp. 1083-1087. , 2-s2.0-84857441283 10.1002/bit.24370(2012) Preço-teto de Leilão de Energia Desencoraja Investimentos em Bioeletricidade, , http://www.unica.com.br/noticias/show.asp?nwsCode=%7B3985304E-7262-4ED3- 8EDE-D85A38934B72%7D, UnicaAden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, , http://www.nrel.gov/docs/fy02osti/32438.pdf, National Renewable Energy Laboratory (NREL), 2010Sosa-Arnao, J.H., Nebra, S., Bagasse dryer role in the energy recovery of water tube boilers (2009) Drying Technology, 27 (4), pp. 587-594. , 2-s2.0-67650303343 10.1080/07373930802716326Luz, T.P.A., Bonan, L.F.B., Passolongo, R., Ramos, R.A.V., Avaliação termodinâmica e termoeconômica do aproveitamento energético da vinhaça num sistema de cogeração de energia de uma usina sucroalcooleira (2010) Proceedings of the Brazilian Conference on Dynamics, Control and Their Applications, 9, pp. 707-803. , Rio Claro, Brazil(2012) Chemical Engineering Plant Cost Index, , http://www.che.com/pci/, Cepci(2012), http://www.ambiente.sp.gov.br/etanolverde/zoneamento-agroambiental/, Secretaria de Estado do Meio Ambiente (SMA) Zoneamento Agroambiental para o Setor SucroalcooleiroHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, , NRELTP-5100-47764 Golden, Colo, USA National Renewable Energy Laborator
Simulation Of An Integrated Sustainable Production Of Extract From Brazilian Ginseng Roots With A Cogeneration Plant
Pfaffia glomerata, which is so-called as Brazilian ginseng, is widely cultivated in South American countries such as Brazil, Ecuador, and Panama. The roots of this plant are used as a Brazilian folk medicine as tonic and for the treatment of diabetes. Since the extract from the roots of P. glomerata has been reported to possess similar effects to ginseng (Panax spp.), large amounts of this plant material are being exported to Japan for production of their extracts. Taking into account the important economical role of adding value to Brazilian ginseng roots in Brazil this study was done. SuperPro Designer 6.0® was used to develop an energetically viable scheme for the production of dry Brazilian ginseng roots extract. Pressurized liquid extraction (PLE) using water as extracting solvent followed by concentration and spray drying steps were employed to produce dry extracts. Additionally, the use of the solid residue from the proposed extraction process as a fuel to produce electricity and steam to fulfill the energetic requirements of the dry extract production process was evaluated. An overall process-yield of approximately 25.6 % employing the experimental extraction yield obtained of 40.5 % w.b. was estimated, which corresponds to 92.1 t of dry Brazilian ginseng roots extract produced per year and to 124.7 t of residue employing 360 t of fresh raw material. Since the utilization of only the residue from extraction (roots previously extracted) showed not to be attractive, the use of the aerial parts also as fuel was also evaluated. It was determined that an amount of 49.3 % of the total amount of aerial parts left in the field during the harvest of the roots is necessary to fulfill the energy requirements of the dry extract production for the proposed process. A moderate pay-back time of 3 years and 9 months to recover the cost of investment (US$ 117, 694.44) was obtained for the installation of a cogeneration plant. Copyright © 2012, AIDIC Servizi S.r.l.299196Albarelli, J.Q., Santos, D.T., Holanda, M.R., Energetic and economic evaluation of waste glycerol cogeneration in Brazil (2011) Brazilian Journal of Chemical Engineering, 28, pp. 691-698. , DOI: 10.1590/S0104-66322011000400014Alexandre, F.C., Meireles, M.A.A., Kfouri, M.B., Leal, P.F., (2010) Processo de Extração de Substâncias Ativas a Partir do Ginseng Brasileiro, , PI0900551-0 A2Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Filho, R.M., Bonomi, A., Second generation ethanol in Brazil: Can it compete with electricity production? (2011) Bioresource Technology, 102, pp. 8964-8971. , DOI: 10.1016/j.biortech.2011.06.098Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell, C.E.V., Filho, R.M., Bonomi, A., Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash (2012) Bioresource Technology, 103, pp. 152-161. , DOI: 10.1016/j.biortech.2011.09.120Gomes, A.C.M.M., Carneiro, R.M.D.G., Ciroto, P.A., Cordeiro, C.M.T., Mattos, J.C., Resistência de Acessos de Pfaffia glomerata a Meloidogyne incógnita Raça 1 (2006) Nematologia Brasileira, 30, pp. 189-194Guçlu-Ustundag, O., Mazza, G., Saponins: Properties, applications and processing (2007) Critical Reviews in Food Science and Nutrition, 47, pp. 231-258. , DOI: 10.1080/10408390600698197Hassuani, S.J., Leal, M.R.L.V., Macedo, I.C., (2005) Biomass Power Generation - Sugarcane Bagasse and Trash, , PNUD-CTC, Piracicaba, BrazilLeal, P.F., Kfouri, M.B., Alexandre, F.C., Fagundes, F.H.R., Prado, J.M., Toyama, M.H., Meireles, M.A.A., Brazilian ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity (2010) Journal of Supercritical Fluids, 54, pp. 38-45. , DOI: 10.1016/j.supflu.2010.03.007Petersson, E.V., Liu, J., Sjöberg, P.J.R., Danielsson, R., Turner, C., Pressurized hot water extraction of anthocyanins from red onion: A study on extraction and degradation rates (2010) Analytica Chimica Acta, 663, pp. 27-32. , DOI: 10.1016/j.aca.2010.01.023Santos, D.T., Veggi, P.C., Meireles, M.A.A., Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins (2012) Journal of Food Engineering, 108, pp. 444-452. , DOI: 10.1016/j.jfoodeng.2011.08.022Shiobara, Y., Inoue, S.S., Kato, K., Nishiguchi, Y., Oishi, Y., Nishimoto, N., Oliveira, F., Hashimoto, G., A nortriterpenoid, triterpenoids and ecdystereoids from pfaffia glomerata (1993) Phytochemistry, 32, pp. 1527-1530. , DOI: 10.1016/0031-9422(93)85172-NVeggi, P.C., Santos, D.T., Meireles, M.A.A., Anthocyanin extraction from jabuticaba (Myrciaria cauliflora) skins by different techniques: Economic evaluation (2011) Procedia Food Science, 1 (2011), pp. 1725-1731. , DOI: 10.1016/j.profoo.2011.09.254Zimmer, A.R., Bruxel, F., Bassani, V.L., Gosmann, G., HPLC method for the determination of ecdysterone in extractive solution from pfaffia glomerata (2006) Journal of Pharmaceutical and Biomedical Analysis, 40, pp. 450-453. , DOI: 10.1016/j.jpba.2005.07.01
Product Diversification To Enhance Economic Viability Of Second Generation Ethanol Production In Brazil: The Case Of The Sugar And Ethanol Joint Production
Commercial simulator Aspen Plus® was used to simulate the conventional processes of the autonomous distillery producing ethanol and the joint production of sugar and ethanol. Changes in conventional processes were evaluated to increase electricity and second generation ethanol production using bagasse fine fraction composed by parenchyma cells (P-fraction). The evaluated processes were thermal and water integrated. The results indicated that the integration of the second generation process to the conventional processes was possible after thermal and water integration. The economic analysis showed that the second generation process integrated to the joint production presented lower payback time, 2.3 years, in comparison with this process integrated to the autonomous distillery, 4.7 years. Due to the high enzyme costs, the cases without second generation ethanol production presented higher economic viability. Product diversification, as sugar and ethanol production in the same site, lowered the impact of enzymes cost on the payback time of second generation process, showing that the integration of the second generation ethanol production process to the conventional sugar production process could be a step to cellulosic ethanol production feasibility in sugarcane mills. © 2013 The Institution of Chemical Engineers.92814701481Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, Technical Report NREL/TP-510-32438 (National Renewable Energy Laboratory, Colorado, USA), pp. 1-88Almeida, E., (2012) Study of the Pneumatic Separation of Sugarcane Bagasse Fractions and its Influence on Enzymatic Hydrolysis, , School of Chemical Engineering-University of Campinas, Campinas, SP, Brazil, (Master Thesis)Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R., Biorefining: computer aided tools for sustainable design and analysis of bioethanol production (2009) Chem. Eng. Res. Des., 87, pp. 1171-1183(2010) Aspen Plus, Users Manual v. 7.2, , ASPENTECHBaral, A., Bakshi, B.R., Smith, R.L., Assessing resource intensity and renewability of cellulosic ethanol technologies using Eco-LCA (2012) Environ. Sci. Technol., 46, pp. 2436-2444Bessa, L.C.B.A., Batista, F.R.M., Meirelles, A.J.A., Double-effect integration of multicomponent alcoholic distillation columns (2012) Energy, 45, pp. 603-612(2008) Sugarcane-based Bioethanol. Energy for Sustainable Development, , BNDES, Rio de Janeiro, BNDESCardona, C.A., Quintero, J.A., Paz, I.C., Production of bioethanol from sugarcane bagasse: status and perspectives (2010) Bioresour. Technol., 101, pp. 4754-4766Carrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2 catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme Microb. Technol., 46, pp. 64-73(2012) Chemical Engineering Plant Cost Index, , http://www.che.com/pci/, (accessed 05.10.12) CEPCICorrea Neto, V., Ramon, D., (2010) Análise de opções tecnológicas para projetos de co-geração no setor sucro-alcooleiro, , http://www.nuca.ie.ufrj.br/infosucro/biblioteca/bim_CorreaNeto_OpcoesCogeracao.pdf, (accessed 06 December 2010)Cunha, L.R.E., Peloso, E.R., (2012) Fábrica compacta de açúcar produção de 36.000 sc/dia com cozimento contínuo Simtec, , http://www.procknor.com.br/, (accessed 23.08.12)Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., MacielFilho, R., Bonomi, A., Second generation ethanol in Brazil: can it compete with electricity production? (2011) Bioresour. Technol., 102, pp. 8964-8971Dias, M.O.S., Ensinas, A.V., Nebra, S.A., Maciel Filho, R., Rossell, C.E.V., Maciel, M.R.W., Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process (2009) Chem. Eng. Res. Des., 87, pp. 1206-1216Dias, M.O.S., Da Cunha, M.P., Maciel Filho, R., Bonomi, A., Jesus, C.D.F., Rossell, C.E.V., Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods (2011) J. Ind. Microbiol. Biotechnol., 38, pp. 955-966Eijsberg, R., (2006) The Design and Economic Analysis of a Modern Bio-ethanol Factory Located in Brazil, , Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands, 98 f (Master Thesis)Elia Neto, A., (2009) Manual de conservação e reuso de água na agroindústria sucroenergética, , Agência Nacional de Águas (ANA), BrasiliaEnsinas, A.V., Modesto, M., Nebra, A.S., Serra, L., Reduction of irreversibility generation in sugar and ethanol production from sugarcane (2009) Energy, 34, pp. 680-688Furlan, F.F., Costa, C.B.B., Cruz, A.J.G., Secchi, A.R., Soares, R.P., Giordano, R.C., Integrated tool for simulation and optimization of a first and second generation ethanol-from-sugarcane production plant (2012) Comput. Aided Chem. Eng., 30, pp. 82-85Furlan, F.F., Costa, C.B.B., Fonseca, G.D.C., Soares, R.D.P., Secchi, A.R., Cruz, A.J.G.D., Giordano, R.D.C., Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling (2012) Comput. Chem. Eng., 43, pp. 1-9Hofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: energy and non-energy consumption (2012) Biomass Bioenergy, 46, pp. 564-573Junqueira, T.L., Dias, M.O.S., Cavalett, O., Jesus, C.D.F., Cunha, M.P., Rossell, C.E.V., MacielFilho, R., Bonomi, A., Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives (2012) Comput. Aided Chem. Eng., 30, pp. 177-181Kemp, I.C., (2007) Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient use of Energy, , Elsevier, OxfordKim, Y., Hendrickson, R., Mosier, N.S., Ladisch, M.R., Liquid hot water pretreatment of cellulosic biomass (2009) Methods Mol. Biol., 581, pp. 93-102Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnol. Bioenergy, 109, pp. 1083-1087Kostin, A.M., Guillén-Gosálbez, G., Mele, F.D., Bagajewicz, M.J., Jiménez, L., Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty (2012) Chem. Eng. Res. Des., 90, pp. 359-376Leite, R.C.C., (2009) Bioetanolcombustivel: uma oportunidade para o Brasil, , Centro de Gestão e Estudos Estratégicos, BrasíliaLinnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , IChemE, RugbyLuz, T.P.A., Bonan, L.F.B., Passolongo, R., Ramos, R.A.V., Avaliação termodinâmica e termoeconÔmica do aproveitamento energético da vinhaça num sistema de cogeração de energia de uma usina sucroalcooleira (2010) Brazilian Conference on Dynamics, Control and their Applications, vol. 9, pp. 707-803Meirelles, A., Weiss, S., Herfurth, H., Ethanol dehydration by extractive distillation (1992) J. Chem. Technol. Biotechnol., 53, pp. 181-188Neves, M.A., Kimura, T., Shimizu, N., Nakajima, M., State of the art and future trends in bioethanol production (2007) Dynamic Biochemistry, Process Biotechnology and Molecular Biology, Global Science BooksNolasco, J., DeMassaguer, P.R., Thermal degradation kinetics of sucrose, glucose and fructose in sugarcane must for bioethanol production (2006) J. Food Process Eng., 29, pp. 462-477Ojeda, K., Ávila, O., Suárez, J., Kafarov, V., Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production-part 1 (2011) Chem. Eng. Res. Des., 89, pp. 270-279Palacios-Bereche, R., Mosqueira-Salazar, K.J., Modesto, M., Ensinas, A.V., Nebra, S.A., Serra, L.M., Lozano, M.-A., Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane (2013) Energy, 62, pp. 46-61Peláez-Samaniego, M.R., (2007) Use of a Biofuel Obtained From the Fast Pyrolysis of Sugarcane Trash in an Otto Engine, , School of Mechanical Engineering-University of Campinas, Campinas, SP, Brazil, (Master Thesis)Pellegrini, L.F., Oliveira Júnior, S., Burbano, J.C., Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane Mills (2010) Energy, 35, pp. 1172-1180Rein, P., (2007) Cane Sugar Engineering, , Verlag Dr. Albert Bartens KG, BerlinSilva, M.A., Maugeri, F., Costa, F.A., (2010), Processo de produção de etanol a partir de hidrólise enzimática de biomassa, processo de separação da matéria-prima de hidrólise e uso de células de parênquima para obtenção de etanol. Brazil Patent PI 1004486-8(2012) Zoneamento Agroambiental para o Setor Sucroalcooleiro, , http://www.ambiente.sp.gov.br/etanolverde/zoneamento-agroambiental/, (accessed 01.06.12) SMA - Secretaria de Estado do Meio AmbienteSosa-Arnao, J.H., Nebra, S., Bagasse dryer role in the energy recovery of water tube boilers (2009) Dry. Technol., 27, pp. 587-594Starzak, M., Mathlouthi, M., Temperature dependence of water activity in aqueous solutions of sucrose (2006) Food Chem., 96, pp. 346-370Stephen, J.D., Mabee, W.E., Saddler, J.N., Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction (2012) Biofuel. Bioprod. Bioref., 6, pp. 159-176(2010) Usina Virtual, , http://www.unica.com.br/usina-virtual/video-new/usina-virtual.htm, (accessed 24.08.10) UNICA(2012) Preço médio da cana-de-açúcar, , http://www.unicadata.com.br/listagem.php%3FidMn=61, (accessed 10.06.12) UNICA(2012) Preço-teto de leilão de energia desencoraja investimentos em bioeletricidade, , http://www.unica.com.br/noticias/show.asp%3FnwsCode=%7B3985304E-7262-4ED3-8EDE-D85A38934B72%7D, (accessed 10.06.12) UNICA(2010) Filial Iturama otimiza adubação de seus canaviais, , http://www.usinacoruripe.com.br/noticias/index.asp%3FvCod=409, (accessed 25.11.10) USINA CORURIPE(2010) O Processo de fabricação de açúcar e álcool na Usina Ester, , http://www.usinaester.com.br/Produtos/produtos.html, (accessed 17.08.10) USINA ESTERWooley, R.J., Putsche, V., Development of an ASPEN PLUS physical property database for biofuels components (1996) Technical Report NREL/MP-425-20685, pp. 1-36. , National Renewable Energy Laboratory, Colorado, US
Combined First And Second Generation Ethanol Production: Analysis Of Supercritical Hydrolysis
Supercritical hydrolysis has been studied for the production of lignocellulosic ethanol to overcome the high cost and long reaction time of enzymatic hydrolysis. Aspen Plus® was used to simulate ethanol and energy production at a conventional autonomous distillery processing 500 ton of sugarcane/hr and a steam based cogeneration system. Thermal integration of the autonomous distillery was conducted using the Pinch Point Method. A reduction of 32% at the bagasse consumption after thermal integration to supply the energy requirements of the autonomous distillery was observed. In Case 1, after thermal integration of first and second generation ethanol production, 43% of bagasse was designated to ethanol production. At this configuration, it was produced 88 L of ethanol/ton of sugarcane, an increase of 13% to the conventional process. In Case 2, an increase of 13% in ethanol production was observed. A different configuration of supercritical hydrolysis considering the direct hydrolysis of the material without pretreatment and co-fermentation of the C5 and C6 monomers could possibly result in higher ethanol productivity per Mw spent. This is an abstract of a paper presented at the CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES (Prague, Czech Republic 8/25-29/2012).Ceska Rafinerska,DEZA,Synpo,BorsodChem,Prazska Plynarenska a.s
Energy Consumption Versus Antioxidant Activity Of Pressurized Fluid Extracts From Pfaffia Glomerata Roots
Conventional extraction techniques have been applied to obtain antioxidant extracts from Pfaffia glomerata roots, most of the times, using polar extracting solvents. Even if these techniques are able to provide extracts with antioxidant activities, more environmentally friendly techniques are nowadays preferred. Among them, supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) with green solvents have been widely applied to natural bioactive compounds extraction. The limitation of the use of pure supercritical CO2 for obtaining antioxidant extracts from Pfaffia glomerata roots was already demonstrated. When high amounts of modifier are added, the formation of a gas-expanded liquid is observed. This extracting solvent combines the advantages of the solvation properties of typical liquids and the transport properties of supercritical fluids, being an intermediate process between SFE and PLE, which can be called as pressurized fluid extraction (PFE). In this work, PFE of Brazilian ginseng (Pfaffia glomerata) roots were performed in order to obtain antioxidant extracts with potential applications in the pharmaceutical and food areas. Several CO2+ethanol mixtures (90:10 %, 50:50 % and 0:100 %, w/w) as extracting fluid were assayed. The effects of other two process parameters including pressure (10-20 MPa) and temperature (323-363 K) on the extraction yield, antioxidant activity and energy consumption per unit of manufactured product were investigated. PFE process was simulated using the SuperPro Designer simulation platform. The use of 10 % (w/w) of ethanol produced extracts with the highest antioxidant activity. On the other hand, higher temperature and ethanol percentage resulted in higher extraction yield and lower energy consumption per unit of manufactured product, while pressure did not affect any response variables. Copyright © 2013, AIDIC Servizi S.r.l.3510991104(1997) AOAC-Association of Official Analytical Chemists, , Cuniff P. (Ed.), AOAC International, Gaithersburg, Maryland, USAMethod of determining and expressing fineness of feed materials by sieving (1993) American Society of Agricultural Engineers Standard, pp. 447-448. , ASAE-American Society of Agricultural Engineers, in: ASAE-American Society of Agricultural EngineersBraga, M.E.M., Meireles, M.A.A., Accelerated solvent extraction and fractioned extraction to obtain the curcuma longa volatile oil and oleoresin (2007) Journal of Food Process Engineering, 30, pp. 501-521Chang, C.J., Chiu, K., Chen, Y., Chang, C., Separation of catechins from green tea using carbon dioxide extraction (2000) Food Chemistry, 68, pp. 109-113. , DOI: 10.1016/S0308-8146(99)00176-4Deuster, R., Lubahn, N., Friedrich, C., Kleibrhmer, W., Supercritical CO2 assisted liquid extraction of nitroaromatic and polycyclic aromatic compounds in soil (1997) Journal of Chromatography A, 785, pp. 227-238Dos Santos, W.J., Silva, E.A., Taranto, O.P., Supercritical fluid extraction from mango (Mangifera indica L.) leaves: Experiments and modeling (2013) Chemical Engineering Transactions, 32, pp. 2005-2010Flores, R., Nicoloso, F.T., Brondani, D., Maldaner, J., Cezarotto, V., Giacomelli, S.R., Extraction of ecdysterone from roots of Brazilian ginseng (2009) Ciência Rural, 39, pp. 1223-1226Júnior, I.M., (2005) Avaliação de Genótipos de Pfaffia Glomerata (Spreng.) Pedersen Visando O Seu Cultivo Comercial, , Master's degree dissertation, Agronomic Institute of Campinas, BrazilLeal, P.F., Kfouri, M.B., Alexandre, F.C., Fagundes, F.H.R., Prado, J.M., Toyama, M.H., Meireles, M.A.A., Brazilian ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity (2010) Journal of Supercritical Fluids, 54, pp. 38-45. , DOI: 10.1016/j.supflu.2010.03.007Lu, G., Zhou, Q., Sun, S., Leung, K.S., Zhang, H., Zhao, Z., Differentiation of Asian ginseng, American ginseng and Notoginseng by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy (2008) Journal of Molecular Structure, 883-884, pp. 91-98. , DOI: 10.1016/j.molstruc.2007.12.008Marco, G.J., A rapid method for evaluation of antioxidant (1968) Journal of the American Oil Chemist's Society, 45, p. 594. , DOI: 10.1007/BF02668958Pasquel, A., Meireles, M.A.A., Marques, M.O.M., Petenate, A.J., Extraction of stevia glycosides with CO2+water, CO 2+ethanol, and CO2+water+ethanol (2000) Brazilian Journal of Chemical Engineering, 17, pp. 271-282. , DOI: 10.1590/S0104-66322000000300003Pereira, C.G., Meireles, M.A.A., (2010) Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives, Food Bioprocess Technology, 3, pp. 340-372. , DOI: 10.1007/s11947-009-0263-2Prado, J.M., Prado, G.H.C., Meireles, M.A.A., Scale-up study of supercritical fluid extraction process for clove and sugarcane residue (2011) Journal of Supercritical Fluids, 56, pp. 231-237. , DOI: 10.1016/j.supflu.2010.10.036Santos, D.T., Albarelli, J.Q., Meireles, M.A.A., Simulation of an integrated sustainable production of extract from Brazilian ginseng roots with a cogeneration plant (2012) Chemical Engineering Transactions, 29, pp. 91-96. , DOI: 10.3303/CET1229016Santos, D.T., Barbosa, D.F., Broccolo, K., Gomes, M.T.M.S., Vardanega, R., Meireles, M.A.A., Pressurized organic solvent extraction with on-line particle formation by supercritical anti solvent processes (2012) Food and Public Health, 2, pp. 231-240. , DOI: 10.5923/j.fph.20120206.08Santos, D.T., Veggi, P.C., Meireles, M.A.A., Extraction of antioxidant compounds from jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation (2010) Journal of Food Engineering, 101, pp. 23-31. , DOI: 10.1016/j.jfoodeng.2010.06.005Seabra, I.J., Braga, M.E.M., Batista, M.T., Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace (2010) Journal of Supercritical Fluids, 54, pp. 145-152. , DOI: 10.1016/j.supflu.2010.05.001Straccia, M.C., Siano, F., Coppola, R., La Cara, F., Volpe, M.G., Extraction and characterization of vegetable oils from cherry seed by different extraction processes (2012) Chemical Engineering Transactions, 27, pp. 391-396. , DOI: 103303/CET1227066Sun, H., Gea, X., Lva, Y., Wang, A., Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed (2012) Journal of Chromatography A, 1237, pp. 1-23. , DOI: 10.1016/j.chroma.2012.03.003Wang, H., Chen, C., Chang, C.J., Carbon dioxide extraction of ginseng root hair oil and ginsenosides (2001) Food Chemistry, 72, pp. 505-509. , DOI: 10.1016/S0308-8146(00)00259-4Wood, J.A., Bernards, M.A., Wan, W., Charpentier, P.A., Extraction of ginsenosides from North American ginseng using modified supercritical carbon dioxide (2006) Journal of Supercritical Fluids, 39, pp. 40-4
Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation
The objective of this study was to investigate the technical-economic feasibility of supercritical antisolvent (SAS) technique for the precipitation of a vitamin complex containing riboflavin, δ-tocopherol and β-carotenein zein microcapsules. First, the following parameters were investigated for the precipitation of pure zein: pressure (7.0–16.0 MPa), anti-solvent flow rate (20–60 g/min), solution flow ratio (0.5–1.5 mL/min) and concentration of zein in an aqueous ethanol solution (0.02–0.04 g/mL). Then, at optimized SAS condition for zein precipitation (pressure of 16 MPa, temperature of 313 K, zein concentration of 0.02 mg/mL, solution flow rate of 1 mL/min and anti-solvent flow rate of 60 g/min) was performed the co-precipitation of the vitamins with zein. The results showed that the mean particle size of the microcapsules varied from 8 to 18 μm, depending on the vitamins encapsulated, being its morphology spherical, meanwhile the precipitation yield was within the range of 41–82 g/100 gCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP302423/2015-0; 401109/2017-8; 150745/2017-6; 140641/2011-499,999.002445/2014-002013/18114-
New Proposal For Production Of Bioactive Compounds By Supercritical Technology Integrated To A Sugarcane Biorefinery
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The construction of a supercritical fluid extraction (SFE) plant inside or in close proximity to a sugarcane biorefinery producing first and second generation ethanol demonstrated to be very promising, increasing the economic potential of the SFE process in up to 57 %, since the SFE plant could use directly the ethanol, CO2, heat, and electricity already available, with lower prices. In this study, Brazilian ginseng roots were used as model bioactive compounds source and first the statistical influence of the extraction conditions including pressure (10-20 MPa), temperature (323-363 K), and CO2/ethanol proportion ratio (90:10, 50:50, and 0:100 %, w/w) on the β-ecdysone content in the extracts was experimentally evaluated and compared with literature results. SFE process evaluated experimentally at the present study showed higher selective extraction for β-ecdysone from Brazilian ginseng roots, providing an extract with up to 2.16 times higher β-ecdysone than the results obtained in previous studies. Thermal integration of the SFE process diminished energy requirements of the process, resulting in a reduction of cold utility requirement of 87 % and a final electricity demand of 7.5 kWh/g of β-ecdysone in the extract. In a situation in which the Brazilian ginseng roots price was increased to 4.71 USD/g, only the SFE integrated with the biorefinery solution would be economically feasible. Finally, the selling of the ginseng roots leftover could be an interesting answer to increase the economical attractiveness of the integrated SFE process to the biorefinery.1671455146809/17234-9; FAPESP; São Paulo Research Foundation; 12/10685-8; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Albarelli, J.Q., Rabelo, R.B., Santos, D.T., Beppu, M.M., Meireles, M.A.A., Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal (2011) J Supercrit Fluids, 58, pp. 343-351. , 1:CAS:528:DC%2BC3MXhtFSjt7%2FOAlbarelli, J.Q., Ensinas, A.V., Ma, S., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2013) Chem Eng Res Des.Arai, K., Smith, Jr.R.L., Aida, T.M., Decentralized chemical processes with supercritical fluid technology for sustainable society (2009) J Supercrit Fluids, 47, pp. 628-636. , 1:CAS:528:DC%2BD1MXptl2itg%3D%3DBollinger, R., (2010) Méthodologie de la Synthèse des Systèmes Énergétiques Industriels, , PhD Thesis, École Politechnique Fédérale de Lausanne, SwitzerlandCrini, G., Non-conventional low-cost adsorbents for dye removal: A review (2006) Bioresour Technol, 97, pp. 1061-1085. , 1:CAS:528:DC%2BD28XivVOjur4%3DEnsinas, A.V., Codina, V., Marechal, F., Albarelli, J., Silva, M.A., Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant (2013) Chem Eng Trans, 35, pp. 523-528Ernesto, V., Ribeiro, C.A., Hojo, O., Fertonani, F.L., Crespi, M.S., Thermal characterization of lignocellulosic residue from different sugarcane (2009) J Therm Anal Calorim, 97, pp. 653-656. , 1:CAS:528:DC%2BD1MXhtlWns7nI(2014) GNU Linear Programming Kit, , http://www.gnu.org/software/glpk/, GLPK Accessed 04 Feb 2014(2013) Ginseng Brasil Herbarium 45 Comprimidos. PanVel Farmácias, , http://www.panvel.com/panvel/visualizarProduto.do?codigoItem=385395, Herbarium Accessed 08 Nov 2013Júnior, I.M., (2005) Avaliação de Genótipos de Pfaffia Glomerata (Spreng.) Pedersen Visando Seu Cultivo Commercial, , Dissertation, University of CampinasKing, J.W., Srinivas, K., Multiple unit processing using sub- and supercritical fluids (2009) J Supercrit Fluids, 47, pp. 598-610. , 1:CAS:528:DC%2BD1MXptl2isw%3D%3DLeal, P.F., Kfouri, M.B., Alexandre, F.C., Fagundes, F.H.R., Prado, J.M., Toyama, M.H., Meireles, M.A.A., Brazilian ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity (2010) J Supercrit Fluids, 54, pp. 38-45. , 1:CAS:528:DC%2BC3cXmvVSqtLo%3DLinnhoff, B., Towsend, D.W., Boland, D., Hewitt, G.F., Thomas, B.E.A., Guy, A.R., Marsland, R.H., (1982) A User Guide on Process Integration for the Efficient Use of Energy, , The Institution of Chemical Engineers RugbyMarechal, F., Kalitventze, B., Process integration: Selection of the optimal utility system (1998) Comput Chem Eng, 22, pp. 149-S156. , 1:CAS:528:DyaK1cXivFOjtbw%3DMeireles, M.A.A., Extraction of bioactive compounds from Latin American plants (2008) Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds, , J. Martinez (eds) CRC Boca RatonPasquel, A., Meireles, M.A.A., Marques, M.O.M., Petenate, A.J., Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol (2000) Braz J Chem Eng, 17, pp. 271-282. , 1:CAS:528:DC%2BD3cXmsF2gtrs%3DPereira, C.G., Meireles, M.A.A., Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives (2010) Food Bioprocess Technol, 3, pp. 340-372. , 1:CAS:528:DC%2BC3cXnsVygsL8%3DPrado, J.M., Prado, G.H.C., Meireles, M.A.A., Scale-up study of supercritical fluid extraction process for clove and sugarcane residue (2011) J Supercrit Fluids, 56, pp. 231-237. , 1:CAS:528:DC%2BC3MXjsFyiurY%3DRostagno, M.A., Debien, I.C.N., Vardanega, R., Nogueira, G.C., Barbero, G.F., Meireles, M.A.A., Fast analysis of β-ecdysone in Brazilian ginseng (Pfaffia glomerata) extracts by high-performance liquid chromatography using a fused-core column (2014) Anal Methods, 6, pp. 2452-2459Saldanha, C.W., Otoni, C.G., Notini, M.M., Kuki, K.N., Cruz, A.C.F., Neto, A.R., Dias, L.L.C., Otoni, W.C., A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] (2013) Vitro Cell Dev Biol Plant, 49, pp. 433-444. , 1:CAS:528:DC%2BC3sXhtlGmtr7FSantos, D.T., Veggi, P.C., Meireles, M.A.A., Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins (2012) J Food Eng, 108, pp. 444-452. , 1:CAS:528:DC%2BC3MXhtlOns7%2FPSantos, D.T., Albarelli, J.Q., Meireles, M.A.A., Simulation of an integrated sustainable production of extract from Brazilian ginseng roots with a cogeneration plant (2012) Chem Eng Trans, 29, pp. 91-96Santos, D.F.L., Rebelato, M.G., Rodrigues, A.M., Analysis of the economic viability of a plant to capture CO2 in the alcohol industry (2012) Rev Gest Tecnol, 12, pp. 64-88. , 1:CAS:528:DC%2BC38Xlsl2rsLc%3DSantos, D.T., Albarelli, J.Q., Rabelo, R.B., Beppu, M.M., Meireles, M.A.A., Characterization of Brazilian ginseng roots and its adsorption properties for heavy metal removal Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal (2012) Proceedings of XIX Brazilian Congress of Chemical Engineering, Buzios, RJ, BrazilSeabra, I.J., Braga, M.E.M., Batista, M.T., Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace (2010) J Supercrit Fluids, 54, pp. 145-152. , 1:CAS:528:DC%2BC3cXoslynu7w%3DSharif, K.M., Rahman, M.M., Azmir, J., Mohamed, A., Jahurul, M.H.A., Sahena, F., Zaidul, M.H.A., ISM experimental design of supercritical fluid extraction - A review (2014) J Food Eng, 124, pp. 105-116. , 1:CAS:528:DC%2BC3sXhslGmtbjLShibuya, T., Ario, T., Fukuda, S., (2001) Composition, , Patent US6224872(2001) Statistica, Users Manual Release 7, , STATISTICAStraccia, M.C., Siano, F., Coppola, R., La Cara, F., Volpe, M.G., Extraction and characterization of vegetable oils from cherry seed by different extraction processes (2012) Chem Eng Trans, 27, pp. 391-396Tang, M.C., Chin, M.W.S., Lim, K.M., Mun, Y.S., Ng, R.T.L., Tay, D.H.S., Ng, D.K.S., Systematic approach for conceptual design of an integrated biorefinery with uncertainties (2013) Clean Technol Environ Policy, 15, pp. 783-799. , 1:CAS:528:DC%2BC3sXhs1SltbnOTurton, R.B., Wallace, B., Whiting, J.S., Bhattacharyya, D., (2003) Analysis, Synthesis and Design of Chemical Processes, , Prentice Hall Upper Saddle RiverZimmer, A.R., Bruxel, F., Bassani, V.L., Gosmann, G., HPLC method for the determination of ecdysterone in extractive solution from Pfaffia glomerata (2006) J Pharm Biomed Anal, 40, pp. 450-453. , 1:CAS:528:DC%2BD28XovVSktQ%3D%3
Valorization Of Sugarcane Biorefinery Residues Using Supercritical Water Gasification: A Case Study And Perspectives
The present study evaluates the use of supercritical fluid technology, particularly supercritical water gasification (SCWG), to add value to residues from a sugarcane biorefinery that produces first and second generation ethanol. This case study aims at elucidating how process system engineering tools such as thermal process integration, life cycle analysis, economic evaluation and multi-objective optimization can contribute to minimizing some future challenges of the industrial implementation of supercritical fluid-based technologies, which were discussed in the Workshop on Supercritical Fluids and Energy - SFE'13. In addition, this case study exposes future perspectives in terms of the requirements to further develop this field. The optimized solutions of the evaluated case showed that the SCWG process increases the overall efficiency of the process in terms of energy and carbon fixation. It decreases the CO2 equivalent emissions and it leads to a thermally self-sufficient process. The economic analysis showed a high investment cost but a feasibility of using the current market prices for the produced fuels and electricity.96133143Hofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: Energy and non-energy consumption (2012) Biomass and Bioenergy, 46, pp. 564-573Albarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2014) Chemical Engineering Research and Design, 92, pp. 1470-1481Stephen, J.D., Mabee, W.E., Saddler, J.N., Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction (2012) Biofuels, Bioproducts and Biorefining, 6, pp. 159-176Clements, L.D., Van Dyne, D.L., The lignocellulosic biorefinery: A strategy for returning to a sustainable source of fuels and industrial organic chemicals (2006) Biorefineries - Industrial Processes and Products: Status Quo and Future Directions, pp. 115-128. , B. Kamm, P.R. Gruber, M. Kamm, Wiley-VCH WeinheimDemirbas, A., Biorefineries: Current activities and future developments (2009) Energy Conversion and Management, 50, pp. 2782-2801Kamm, B., Introduction of biomass and biorefineries (2013) The Role of Green Chemistry in Biomass Processing and Conversion, pp. 1-26. , H. Xie, N. Gathergood, John Wiley & Sons, Inc. New JerseyEnsinas, A.V., Codina, V., Maréchal, F., Albarelli, J.Q., Silva, M.A., Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant (2013) Chemical Engineering Transactions, 35, pp. 523-528Kang, S., Li, X., Fan, J., Chang, J., Hydrothermal conversion of lignin: A review (2013) Renewable and Sustainable Energy Reviews, 27, pp. 546-558Sato, T., Furusawa, T., Ishiyama, Y., Sugito, H., Miura, Y., Sato, M., Suzuki, N., Itoh, N., Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water (2006) Industrial & Engineering Chemistry Research, 45, pp. 615-622Goodwin, A.K., Rorrer, G.L., Modeling of supercritical water gasification of xylose to hydrogen-rich gas in a hastelloy microchannel reactor (2011) Industrial & Engineering Chemistry Research, 50, pp. 7172-7182Loppinet-Serani, A., Reverte, C., Cansell, F., Aymonier, C., Supercritical water biomass gasification process as a successful solution to valorize wine distillery wastewaters (2013) ACS Sustainable Chemistry & Engineering, 1, pp. 110-117Kruse, A., Hydrothermal biomass gasification (2009) J. Supercritical Fluids, 47, pp. 391-399Ye, X.P., Cheng, L., Ma, H., Bujanovic, B., Goundalkar, M.J., Amidon, T.E., Biorefinery with water (2013) The Role of Green Chemistry in Biomass Processing and Conversion, pp. 135-180. , H. Xie, N. Gathergood, John Wiley & Sons, Inc. New JerseyZöhrer, H., Vogel, F., Hydrothermal catalytic gasification of fermentation residues from a biogas plant (2013) Biomass and Bioenergy, 53, pp. 138-148(2006) Environmental Management - Life Cycle Assessment - Principles and Framework, , http://www.iso.org/, Iso 14040 International Standard Available from(2006) Environmental Management - Life Cycle Assessment - Requirements and Guidelines, , http://www.iso.org/, Iso 14044 International Standard Available fromGerber, L., Gassner, M., Maréchal, F., Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass (2011) Computers and Chemical Engineering, 35, pp. 1265-1280(2013) Workshop on Supercritical Fluids and Energy - SFE'13, , http://lasefi.com.br/sfe13/, Campinas, Brazil, 8-11 December 2013 Available from(2010) Aspen Plus, V. 7.2, , http://www.aspentech.com/, Available fromRein, P., (2007) Cane Sugar Engineering, , Verlag Dr. Albert Bartens KG BerlinCarrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2 catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme and Microbial Technology, 46, pp. 64-73Arantes, V., Saddler, J.N., Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates (2011) Biotechnology for Biofuels, 4, pp. 1-16(2013) Belsim Vali 4.7.0.0, , http://www.belsim.com/, Available fromGassner, M., Vogel, F., Heyen, G., Maréchal, F., Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Thermo-economic process modelling and integration (2011) Energy & Environmental Science, 4, pp. 1726-1741Waldner, M.H., (2007) Catalytic Hydrothermal Gasification of Biomass for the Production of Synthetic Natural Gas, , (Ph.D. thesis) Eidgenössische Technische Hochschule Zürich (ETH) Zürich, SwitzerlandBolliger, R., (2010) Méthodologie de la Synthèse des Systems Énergétiques Industriels, , (Ph.D. thesis) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandMolyneaux, A., Leyland, G., Favrat, D., Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps (2010) Energy, 35, pp. 751-758Gassner, M., Maréchal, F., Methodology for the optimal thermo-economic, multi-objective design of thermochemical fuel production from biomass (2009) Computers & Chemical Engineering, 33, pp. 769-781(2013) OSMOSE Platform: A Tool for the Design and Analysis of Integrated Energy Systems, , http://leni.epfl.ch/osmoseLinnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , 1st ed. IChemE RugbyTurton, R., (2009) Analysis, Synthesis, and Design of Chemical Processes, , 3rd ed. Prentice-Hall Upper Saddle RiverUlrich, G., Vasudevan, P., (2003) A Guide to Chemical Engineering Process Design and Economics: A Practical Guide, , 2nd ed. CRC Boca RatonGerber, L., (2012) Integration of Life Cycle Assessment in the Conceptual Design of Renewable Energy Conversion Systems, , (Ph.D. thesis) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland(2010) Implementation of Life Cycle Impact Assessment Methods, , http://www.ecoinvent.org/fileadmin/documents/en/03_LCIA-Implementation-v2.2.pdf, Ecoinventreport St. Gallen Available from: (accessed 01.06.13)(2013) Economic Indicators. Marshall & Swift Equipment Cost Index, , https://www.marshallswift.com/p-30-marshall-valuation-service.aspx(2012) UNICA Preço-teto de Leilão de Energia Desencoraja Investimentos em Bioeletricidade, , http://www.unica.com.br/noticias/show.asp%3FnwsCode=%7B3985304E-7262-4ED3-8EDE-D85A38934B72%7DHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Technical Report. NREL/TP-5100-47764Elia Neto, A., (2009) Manual de Conservação e Reuso de Água Na Agroindústria Sucroenergética, , Agência Nacional de Águas (ANA) BrasiliaKlein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnology and Bioengineering, 109, pp. 1083-108