19 research outputs found

    Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor

    Get PDF
    Gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptor superfamily, has been utilized for receptor-mediated targeting of imaging and therapeutic agents; here we extend its use to oligonucleotide delivery. A splice-shifting antisense oligonucleotide was conjugated to a bombesin (BBN) peptide, and its intracellular delivery was tested in GRPR expressing PC3 cells stably transfected with a luciferase gene interrupted by an abnormally spliced intron. The BBN-conjugate produced significantly higher luciferase expression compared to unmodified oligonucleotide, and this increase was reversed by excess BBN peptide. Kinetic studies revealed a combination of saturable, receptor-mediated endocytosis and non-saturable pinocytosis for uptake of the conjugate. The Km value for saturable uptake was similar to the EC50 value for the pharmacological response, indicating that receptor-mediated endocytosis was a primary contributor to the response. Use of pharmacological and molecular inhibitors of endocytosis showed that the conjugate utilized a clathrin-, actin- and dynamin-dependent pathway to enter PC3 cells. The BBN-conjugate partially localized in endomembrane vesicles that were associated with Rab7 or Rab9, demonstrating that it was transported to late endosomes and the trans-golgi network. These observations suggest that the BBN-oligonucleotide conjugate enters cells via a process of GRPR mediated endocytosis followed by trafficking to deep endomembrane compartments

    Covalent conjugation of oligonucleotides with cell-targeting ligands

    Get PDF
    A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand-oligonucleotide conjugates to promote receptor mediated cell uptake and delivery. Here we provide an overview of recent developments regarding targeted conjugates, including use of peptides, carbohydrates and small molecules as ligands. Additionally we discuss our own experience with this approach and point out both advantages and limitations

    Cellular Delivery and Biological Activity of Antisense Oligonucleotides Conjugated to a Targeted Protein Carrier

    Get PDF
    Targeted delivery can potentially improve the pharmacological effects of antisense and siRNA oligonucleotides. Here we describe a novel bioconjugation approach to the delivery of splice-shifting antisense oligonucleotides (SSOs). The SSOs are linked to albumin via reversible S-S bonds. The albumin is also conjugated with polyethylene glycol (PEG) chains that terminate in an RGD ligand that selectively binds the αvβ3 integrin. As a test system we utilized human melanoma cells that express the αvβ3 integrin and that also contain a luciferase reporter gene that can be induced by delivery of SSOs to the cell nucleus. The RGD-PEG-SSO-albumin conjugates were endocytosed by the cells in an RGD-dependent manner; using confocal fluorescence microscopy evidence was obtained that the SSOs accumulate in the nucleus. The conjugates were able to robustly induce luciferase expression at concentrations in the 25−200nM range. At these levels little short-term or long-term toxicity was observed. Thus the RGD-PEG-Albumin conjugates may provide an effective tool for targeted delivery of oligonucleotides to certain cells and tissues

    Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor

    Get PDF
    Gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptor superfamily, has been utilized for receptor-mediated targeting of imaging and therapeutic agents; here we extend its use to oligonucleotide delivery. A splice-shifting antisense oligonucleotide was conjugated to a bombesin (BBN) peptide, and its intracellular delivery was tested in GRPR expressing PC3 cells stably transfected with a luciferase gene interrupted by an abnormally spliced intron. The BBN-conjugate produced significantly higher luciferase expression compared to unmodified oligonucleotide, and this increase was reversed by excess BBN peptide. Kinetic studies revealed a combination of saturable, receptor-mediated endocytosis and non-saturable pinocytosis for uptake of the conjugate. The Km value for saturable uptake was similar to the EC50 value for the pharmacological response, indicating that receptor-mediated endocytosis was a primary contributor to the response. Use of pharmacological and molecular inhibitors of endocytosis showed that the conjugate utilized a clathrin-, actin- and dynamin-dependent pathway to enter PC3 cells. The BBN-conjugate partially localized in endomembrane vesicles that were associated with Rab7 or Rab9, demonstrating that it was transported to late endosomes and the trans-golgi network. These observations suggest that the BBN-oligonucleotide conjugate enters cells via a process of GRPR mediated endocytosis followed by trafficking to deep endomembrane compartments

    Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection

    Get PDF
    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as successful agents for magnetically enhanced transfection of an antisense oligonucleotide

    The Biological Effect of an Antisense Oligonucleotide Depends on Its Route of Endocytosis and Trafficking

    Get PDF
    We demonstrate that the biological effect of an oligonucleotide is influenced by its route of cellular uptake. Utilizing a splice-switching antisense oligonucleotide (SSO) and a sensitive reporter assay involving correction of RNA splicing, we examined induction of luciferase in cells treated either with various concentrations of an unconjugated (“free”) SSO or an SSO conjugated to a bivalent RGD ligand that promotes binding to the αvβ3 integrin (RGD-SSO). Under conditions of equal accumulation in cells, the RGD-SSO consistently had a greater effect on luciferase induction than the unconjugated SSO. We determined that the RGD-SSO and the unconjugated SSO were internalized by distinct endocytotic pathways, suggesting that the route of internalization affects the magnitude of the biological response

    Multivalent Cyclic RGD Conjugates for Targeted Delivery of Small Interfering RNA

    Get PDF
    We have designed, synthesized and tested conjugates of chemically modified luciferase siRNA (Luc-siRNA) with bi-, tri- and tetravalent cyclic(arginine-glycine-aspartic) peptides (cRGD) that selectively bind to the αvβ3 integrin. The cellular uptake, subcellular distribution and pharmacological effects of the cRGD conjugated Luc-siRNAs as compared to un-conjugated controls were examined using a luciferase reporter cassette stably transfected into αvβ3 positive M21+ human melanoma cells. The M21+ cells exhibited receptor-mediated uptake of cRGD-siRNA conjugates but not of unconjugated control siRNA. The fluorophore-tagged cRGD-siRNA conjugates were taken up by a caveolar endocytotic route and primarily accumulated in cytosolic vesicles. The bi-, tri- and tetravalent cRGD conjugates were taken up by M21+ cells to approximately the same degree. However, there were notable differences in their pharmacological effectiveness. The tri- and tetravalent versions produced progressive, dose-dependent reductions in luciferase expression, while the bivalent version had little effect. The basis for this divergence of uptake and effect is currently unclear. Nonetheless the high selectivity and substantial ‘knock down’ effects of the multivalent cRGD-siRNA conjugates suggest that this targeting and delivery strategy deserves further exploration

    Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis

    Get PDF
    We describe the synthesis and characterization of a 5′ conjugate between a 2′-O-Me phosphorothioate antisense oligonucleotide and a bivalent RGD (arginine–glycine–aspartic acid) peptide that is a high-affinity ligand for the αvβ3 integrin. We used αvβ3-positive melanoma cells transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spliced intron. Intranuclear delivery of a specific antisense oligonucleotide (termed 623) corrects splicing and allows luciferase expression in these cells. The RGD–623 conjugate or a cationic lipid-623 complex produced significant increases in luciferase expression, while ‘free’ 623 did not. However, the kinetics of luciferase expression was distinct; the RGD–623 conjugate produced a gradual increase followed by a gradual decline, while the cationic lipid-623 complex caused a rapid increase followed by a monotonic decline. The subcellular distribution of the oligonucleotide delivered using cationic lipids included both cytoplasmic vesicles and the nucleus, while the RGD–623 conjugate was primarily found in cytoplasmic vesicles that partially co-localized with a marker for caveolae. Both the cellular uptake and the biological effect of the RGD–623 conjugate were blocked by excess RGD peptide. These observations suggest that the bivalent RGD peptide–oligonucleotide conjugate enters cells via a process of receptor-mediated endocytosis mediated by the αvβ3 integrin
    corecore