33 research outputs found

    Effects of electrical lesions of the medial preoptic area and the ventral pallidum on mate-dependent paternal behavior in mice

    Get PDF
    13301甲第4096号博士(医学)金沢大学博士論文本文Full 以下に掲載:Neuroscience Letters 570(6) pp.21-25 2014. ELSEVIER. 共著者:Shirin Akther, Azam A.K.M. Fakhrul, Haruhiro Higashida

    Antinociceptive Activity of Methanol Extract of Areca catechu L. (Arecaceae) Stems and Leaves in Mice

    Get PDF
    ABSTRACT The antinociceptive effect of crude methanol extracts of stems and leaves of Areca catechu L. (Arecaceae) was evaluated in acetic acid-induced gastric pain writhing model in Swiss albino mice. The methanol extract of Areca catechu stems dose-dependently reduced the number of writhings (constrictions) in mice, when tested at doses of 50, 100, 200, and 400 mg extract administered per kg body weight. Significant reductions in the number of writhings were noted with all administered doses. The percent inhibitions of acetic acid-induced writhings with the four different doses were, respectively, 30.8, 36.6, 40.9 and 59.6. The standard antinociceptive drug, aspirin, when administered at doses of 200 and 400 mg per kg body weight reduced writhings by 42.3 and 55.8%, respectively. A significant dose-dependent inhibition of writhings was also observed with crude methanol extract of Areca catechu leaves, where the extract at doses of 50, 100, 200 and 400 mg per kg body weight significantly inhibited writhings by 55.8, 57.7, 86.5 and 88.5%, respectively. Dose for dose, the leaf extract demonstrated higher antinociceptive activity than the stem extract. At even the lowest dose of 50 mg extract per kg body weight, the antinociceptive activity of leaf extract was comparable to that of 400 mg aspirin per kg body weight. The results suggest that both stem and leaf extract possess good antinociceptive activity, which merits further scientific studies as to isolation of responsible phytochemical component(s)

    Social memory, amnesia, and autism: Brain oxytocin secretion is regulated by NAD + metabolites and single nucleotide polymorphisms of CD38

    Get PDF
    Previously, we demonstrated that CD38, a transmembrane protein with ADP-ribosyl cyclase activity, plays a critical role in mouse social behavior by regulating the release of oxytocin (OXT), which is essential for mutual recognition. When CD38 was disrupted, social amnesia was observed in Cd38 knockout mice. The autism spectrum disorders (ASDs), characterized by defects in reciprocal social interaction and communication, occur either sporadically or in a familial pattern. However, the etiology of ASDs remains largely unknown. Therefore, the theoretical basis for pharmacological treatments has not been established. Hence, there is a rationale for investigating single nucleotide polymorphisms (SNPs) in the human CD38 gene in ASD subjects. We found several SNPs in this gene. The SNP rs3796863 (C > A) was associated with high-functioning autism (HFA) in American samples from the Autism Gene Resource Exchange. Although this finding was partially confirmed in low-functioning autism subjects in Israel, it has not been replicated in Japanese HFA subjects. The second SNP of interest, rs1800561 (4693C > T), leads to the substitution of an arginine (R) at codon 140 by tryptophan (W; R140W) in CD38. This mutation was found in four probands of ASD and in family members of three pedigrees with variable levels of ASD or ASD traits. The plasma levels of OXT in ASD subjects with the R140W allele were lower than those in ASD subjects lacking this allele. The OXT levels were unchanged in healthy subjects with or without this mutation. One proband with the R140W allele receiving intranasal OXT for approximately 3 years showed improvement in areas of social approach, eye contact and communication behaviors, emotion, irritability, and aggression. Five other ASD subjects with mental deficits received nasal OXT for various periods; three subjects showed improved symptoms, while two showed little or no effect. These results suggest that SNPs in CD38 may be possible risk factors for ASD by abrogating OXT function and that some ASD subjects can be treated with OXT in preliminary clinical trials. © 2011 Elsevier Ltd. All rights reserved

    Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice

    Get PDF
    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i) that seems to trigger OT release can be elevated by β-NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38-or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than those of control mice. The TRPM2 mRNA levels and immunoreactivities increased in the subordinate group with cage-switch stress. These results showed that cADPR/CD38 and heat/TRPM2 are co-regulators of OT secretion and suggested that CD38 and TRPM2 are potential therapeutic targets for OT release in psychiatric diseases caused by social stress. © 2016 Zhong, Amina, Liang, Akther, Yuhi, Nishimura, Tsuji, Tsuji, Liu, Hashii, Furuhara, Yokoyama, Yamamoto, Okamoto, Zhao, Lee, Tominaga, Lopatina and Higashida

    An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator

    Get PDF
    Background: Recent rodent and human studies provide evidence in support of the fact that CD157, well known as bone marrow stromal cell antigen-1 (BST-1) and a risk factor in Parkinson\u27s disease, also meaningfully acts in the brain as a neuroregulator and affects social behaviors. It has been shown that social behaviors are impaired in CD157 knockout mice without severe motor dysfunction and that CD157/BST1 gene single nucleotide polymorphisms are associated with autism spectrum disorder in humans. However, it is still necessary to determine how this molecule contributes to the brain\u27s physiological and pathophysiological functions. Methods: To gain fresh insights about the relationship between the presence of CD157 in the brain and its enzymatic activity, and aberrant social behavior, CD157 knockout mice of various ages were tested. Results: CD157 immunoreactivity colocalized with nestin-positive cells and elements in the ventricular zones in E17 embryos. Brain CD157 mRNA levels were high in neonates but low in adults. Weak but distinct immunoreactivity was detected in several areas in the adult brain, including the amygdala. CD157 has little or no base exchange activity, but some ADP-ribosyl cyclase activity, indicating that CD157 formed cyclic ADP-ribose but much less nicotinic acid adenine dinucleotide phosphate, with both mobilizing Ca2+ from intracellular Ca2+ pools. Social avoidance in CD157 knockout mice was rescued by a single intraperitoneal injection of oxytocin. Conclusions: CD157 may play a role in the embryonic and adult nervous systems. The functional features of CD157 can be explained in part through the production of cyclic ADP-ribose rather than nicotinic acid adenine dinucleotide phosphate. Further experiments are required to elucidate how the embryonic expression of CD157 in neural stem cells contributes to behaviors in adults or to psychiatric symptoms. © 2017 The Author(s)

    Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson\u27s disease

    Get PDF
    金沢大学疾患モデル総合研究センターCD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositolanchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinson\u27s disease (PD), little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157-/-) male mice under less aging-related effects on behaviors. CD157-/- mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity in the amygdala was less evident in CD157-/- mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD. © 2014 Lopatina, Yoshihara, Nishimura, Zhong, Akther, Fakhrul, Liang, Higashida, Sumi, Furuhara, Inahata, Huang, Koizumi, Yokoyama, Tsuji, Petugina, Sumarokov, Salmina, Hashida, Kitao, Hori, Asano, Kitamura, Kozaka, Shiba, Zhong, Xie, Sato, Ishihara and Higashida.CC-BY 4.

    Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice

    Get PDF
    金沢大学医薬保健研究域医学系Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt -/-, Cd38 -/-) or its receptor (Oxtr -/-) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt -/- and Cd38 -/-, but not Oxtr -/- mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager -/- male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager -/- mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding.3082047

    Effects of Three Lipidated Oxytocin Analogs on Behavioral Deficits in CD38 Knockout Mice

    No full text
    Oxytocin (OT) is a nonapeptide that plays an important role in social behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects. As is consistent with the nature of a peptide, OT has some unfavorable characteristics: it has a short half-life in plasma and shows poor permeability across the blood-brain barrier. Analogs with long-lasting effects may overcome these drawbacks. To this end, we have synthesized three analogs: lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues, lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which include one palmitoyl group conjugated at the cysteine or tyrosine residue, respectively. The following behavioral deficits were observed in CD38 knockout (CD38−/−) mice: a lack of paternal nurturing in CD38−/− sires, decreased ability for social recognition, and decreased sucrose consumption. OT demonstrated the ability to recover these disturbances to the level of wild-type mice for 30 min after injection. LOT-2 and LOT-3 partially recovered the behaviors for a short period. Conversely, LOT-1 restored the behavioral parameters, not for 30 min, but for 24 h. These data suggest that the lipidation of OT has some therapeutic benefits, and LOT-1 would be most useful because of its long-last activity
    corecore