4 research outputs found

    Open call -menettelyn suunnittelu PyhÀsalmen kaivoksen maanalaisiin tiloihin sijoitettavista tieteellisistÀ kokeista

    No full text
    Abstract The PyhĂ€salmi mine and the surrounding brownfield area offer the unique infrastructure and a wealth of opportunities for a variety of scientific and commercial purposes. It already hosts successful EMMA and C14 experiments, and has been thoroughly studied and noted as the most prominent location in Europe to host very large-scale particle physic experiments. There is a strong demand for the underground spaces around the world. By using the open call, it is possible to invite scientific and commercial actors to locate their experiments, pilots, and operations to the PyhĂ€salmi Mine area to utilize the world-class infrastructure. We propose two active ways to carry out the actual open call, and we also present a detailed plans to execute them within maximum of two years time span, 2015–17. The procedures differs on the basis of the stage of the maturity of the proposal/ project/ experiment plans. The third way to carry out the process is passive marketing. Despite the selected procedures some actions has to be carried out prior to carrying out the open call -process: 1) To establish the board to evaluate to upcoming proposals, 2) to define the potential spaces in the mine and prepare the marketing material, 3) to survey the possible users in different fields, 4) to define the selection criteria, and 5) to ask for Letter of Intents from different users. In addition to these we suggest to establish/select the legal entity to execute all these actions. Open call procedure of use of underground facilities of PyhĂ€salmi Mine for scientific purposes report is ordered by Nivala-HaapajĂ€rven seutu Nihak ry. Open call actions have been promoted since 2015 according to this report. This study and plan have been useful in concretizing and promoting the open call process.TiivistelmĂ€ PyhĂ€salmen kaivoksen ympĂ€ristö tarjoaa ainutlaatuisen infrastruktuurin ja ympĂ€ristön erilaiselle niin kaupalliselle kuin tieteellisellekin toiminnalle. KaivosympĂ€ristöön on rakennettu EMMA ja C14 -kokeet muun toiminnan ohella. KaivosympĂ€ristö on lisĂ€ksi tutkittu hyvin tarkkaan ja sitĂ€ on pidetty parhaana sijoituspaikkana myös suurelle hiukkasfysiikan kokeelle. Maanalaisista tiloista on suuri tarve maailmalla, sillĂ€ olemassa olevat tilat ovat tĂ€ynnĂ€. Open call -menettelyllĂ€ on mahdollista kutsua tieteellisiĂ€ ja kaupallisiakin toimijoita sijoittamaan kokeensa tai toimintansa PyhĂ€salmen kaivoksen tiloihin hyödyntĂ€mÀÀn erinomaista infrastruktuuria. Open call -menettelyselvityksessĂ€ on esitelty kaksi erilaista toimintatapaa uusien kokeiden hankkimiseksi. Samalla on esitetty aikataulusuunnitelma toimien toteuttamiseksi. YhtenĂ€ ympĂ€ristön markkinointikeinona on esitelty myös passiivinen markkinointi. Toiminnan kehittĂ€misen ja open call -prosessin eteenpĂ€in viemisen edellytyksenĂ€ on: 1) ArviointiryhmĂ€n kokoaminen esitysten arvioimiseksi, 2) sopivien toimitilojen kartoittaminen kaivosympĂ€ristössĂ€ ja markkinointimateriaalin luominen, 3) eri alojen toimijoiden kartoittaminen, 4) arvosteluperusteiden mÀÀrittĂ€minen ja 5) aiesopimuksen laatiminen toimijoiden kanssa. Toimien toteuttamiseksi ja jatkotoiminnan kehittĂ€miseksi on suositeltu perustaa kiinteistöyhtiö tai vastaava, jonka tehtĂ€vĂ€nĂ€ on myös hallinnoida ja perustaa uusia tiloja tarpeiden mukaisesti. Open call -menettelyn suunnittelu PyhĂ€salmen kaivoksen maanalaisiin tiloihin sijoitettavista tieteellisistĂ€ kokeista -selvitys on toteutettu Nivala-HaapajĂ€rven seutukunnan tilauksesta. Toimia on edistetty vuodesta 2015 alkaen tĂ€mĂ€n suunnitelman mukaisesti. SelvityksestĂ€ on ollut hyötyĂ€ kokonaisuuden konkretisoinnissa ja toimien eteenpĂ€in viemisessĂ€

    Plans for the future scientific activities in the PyhÀsalmi mine

    No full text
    Abstract The PyhÀsalmi Mine is approximately 1,400 metres deep metal mine at PyhÀjÀrvi, Finland. This one of the deepest mine offers unique facilities and underground infrastructure for several purposes. For the exploitation of the infrastructure after the end of underground excavations there are plans to establish a Science and Research Centre in the mine. Different international studies and reports have proven that the PyhÀsalmi Mine area is an excellent site for underground physics experiments from both technical, infrastructural and scientifical point of view [1]. This feasibility has been shown, for example, by the extended site investigations at PyhÀsalmi Mine [2] which included, among others, analyses of the structural, physical and chemical conditions of the rock mass. The facilities of the mine are excellent, for example, for various kind of physics experiments due to the large rock overburden, but also for other fields of science. Therefore, during 2015 an open call process will be organized in which new experiments looked for to utilize the underground facilities. In this work we present plans for the future activities in the PyhÀsalmi Mine

    Measuring the Âč⁎C content in liquid scintillators

    No full text
    Abstract In order to detect low-energy neutrinos, for example the solar neutrinos from the ppchain (with the maximum neutrino energy of approximately 400 keV) requires that the intrinsic Âč⁎C content in a liquid scintillator is at extremely low level. In the Borexino detector, a 300-ton liquid scintillation detector at Gran Sasso, Italy, the ratio of Âč⁎C to ÂčÂČC of approximately 2 × 10⁻Âč⁞ has been achieved. It is the lowest value ever measured. The detector situates underground at the depth of 3200 mwe (1200 m). Âč⁎C cannot be removed from liquid scintillators by chemical methods, or by other methods in large quantities (liters). In principle, the older is the oil or gas source that the liquid scintillator is made of and the deeper it situates, the smaller should be the Âč⁎C-to-ÂčÂČC ratio. This, however, is not generally the case, and the ratio depends on the activity (U and Th content) in the environment of the source. We have started a series of measurements where the Âč⁎C-to-ÂčÂČC ratio will be measured from liquid scintillator samples. The measurements take place in two underground laboratories: in the PyhĂ€salmi mine, Finland, at the depth of 4000 mwe (1400 meters) and at the Baksan Underground Laboratory, Russia at 4800 mwe, for reducing and better understanding systematical uncertainties. There will be about ten samples with the known origin, each of them 2 litres. The liquid scintillator vessel, light quides and low-active PMTs will be shielded with thick layers copper and lead. Nitrogen flow is used to reduce the radon background. The aim is to measure ratios smaller than 10⁻Âč⁞, if such samples exists. One measurement takes several weeks
    corecore