30 research outputs found
Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data
Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images
Sparse And Low Rank Decomposition Based Batch Image Alignment for Speckle Reduction of retinal OCT Images
Optical Coherence Tomography (OCT) is an emerging technique in the field of
biomedical imaging, with applications in ophthalmology, dermatology, coronary
imaging etc. Due to the underlying physics, OCT images usually suffer from a
granular pattern, called speckle noise, which restricts the process of
interpretation. Here, a sparse and low rank decomposition based method is used
for speckle reduction in retinal OCT images. This technique works on input data
that consists of several B-scans of the same location. The next step is the
batch alignment of the images using a sparse and low-rank decomposition based
technique. Finally the denoised image is created by median filtering of the
low-rank component of the processed data. Simultaneous decomposition and
alignment of the images result in better performance in comparison to simple
registration-based methods that are used in the literature for noise reduction
of OCT images.Comment: Accepted for presentation at ISBI'1
Dense Descriptors for Optical Flow Estimation: A Comparative Study
Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation
Weekday-Weekend, Day of Week, and Prior Day Effects in Forecasting Daily Natural Gas Demand from Monthly Data
Local natural gas distribution companies rely on accurate forecasts of daily demand/flow for buying and delivering gas to their customers. Such forecasts are done by devising computational methods that take into account weather data and historical daily flow in regions of interest. However, in some cases, historical measured daily data is not available. In this work, multiparameter linear regression models are built when only monthly/billing-cycle flow data is available for disaggregation and to forecast daily flow. Results show monthly consumption data can be used in conjunction with daily weather data to provide accurate estimates of daily demand. To improve models, adjustments such as Weekday vs. Weekend, Day of Week, and Prior Day weather are incorporated into the models. In comparison to the base linear regression models, these adjustments can decrease the forecast error by up to 20% using the best combination of mentioned adjustments