43 research outputs found

    Leaf Counting: Fusing Network Components for Improved Accuracy

    Get PDF
    Leaf counting in potted plants is an important building block for estimating their health status and growth rate and has obtained increasing attention from the visual phenotyping community in recent years. Two novel deep learning approaches for visual leaf counting tasks are proposed, evaluated, and compared in this study. The first method performs counting via direct regression but using multiple image representation resolutions to attend leaves of multiple scales. The leaf count from multiple resolutions is fused using a novel technique to get the final count. The second method is detection with a regression model that counts the leaves after locating leaf center points and aggregating them. The algorithms are evaluated on the Leaf Counting Challenge (LCC) dataset of the Computer Vision Problems in Plant Phenotyping (CVPPP) conference 2017, and a new larger dataset of banana leaves. Experimental results show that both methods outperform previous CVPPP LCC challenge winners, based on the challenge evaluation metrics, and place this study as the state of the art in leaf counting. The detection with regression method is found to be preferable for larger datasets when the center-dot annotation is available, and it also enables leaf center localization with a 0.94 average precision. When such annotations are not available, the multiple scale regression model is a good option

    Learning a kernel function for classification with small training samples

    No full text
    When given a small sample, we show that classification with SVM can be considerably enhanced by using a kernel function learned from the training data prior to discrimination. This kernel is also shown to enhance retrieval based on data similarity. Specifically, we describe KernelBoost- a boosting algorithm which computes a kernel function as a combination of ’weak ’ space partitions. The kernel learning method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in a semi-supervised or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all classes. We show comparative evaluations of our method on datasets from the UCI repository. We demonstrate performance enhancement on two challenging tasks: digit classification with kernel SVM, and facial image retrieval based on image similarity as measured by the learnt kernel. 1

    Boosting margin based distance functions for clustering

    No full text
    The performance of graph based clustering methods critically depends on the quality of the distance function, used to compute similarities between pairs of neighboring nodes. In this paper we learn distance functions by training binary classifiers with margins. The classifiers are defined over the product space of pairs of points and are trained to distinguish whether two points come from the same class or not. The signed margin is used as the distance value. Our main contribution is a distance learning method (DistBoost), which combines boosting hypotheses over the product space with a weak learner based on partitioning the original feature space. Each weak hypothesis is a Gaussian mixture model computed using a semi-supervised constrained EM algorithm, which is trained using both unlabeled and labeled data. We also consider SVM and decision trees boosting as margin based classifiers in the product space. We experimentally compare the margin based distance functions with other existing metric learning methods, and with existing techniques for the direct incorporation of constraints into various clustering algorithms. Clustering performance is measured on some benchmark databases from the UCI repository, a sample from the MNIST database, and a data set of color images of animals. In most cases the DistBoost algorithm significantly and robustly outperformed its competitors. 1

    Sparse Hierarchical Table Ensemble–A Deep Learning Alternative for Tabular Data

    No full text
    Deep learning for tabular data is drawing increasing attention, with recent work attempting to boost the accuracy of neuron-based networks. However, such deep learning models are deserted when computational capacity is low, as in Internet of Things (IoT), drone, or Natural User Interface (NUI) applications. We offer to enable deep learning capabilities using ferns (oblivious decision trees) instead of neurons by constructing a Sparse Hierarchical Table Ensemble (S-HTE). S-HTE is dense at the beginning of the training process and becomes gradually sparse using an annealing mechanism, leading to an efficient final predictor. Unlike previous work with ferns, S-HTE learns useful internal representations and earns from increasing depth. Using a standard classification and regression benchmark, we show its accuracy is comparable to alternatives while havingy lower computational complexity. Our PyTorch implementation is available at https://github.com/farjon/HTE_CTE

    Learning distance function by coding similarity

    No full text
    We consider the problem of learning a similarity function from a set of positive equivalence constraints, i.e. ’similar ’ point pairs. We define the similarity in information theoretic terms, as the gain in coding length when shifting from independent encoding of the pair to joint encoding. Under simple Gaussian assumptions, this formulation leads to a non-Mahalanobis similarity function which is efficient and simple to learn. This function can be viewed as a likelihood ratio test, and we show that the optimal similaritypreserving projection of the data is a variant of Fisher Linear Discriminant. We also show that under some naturally occurring sampling conditions of equivalence constraints, this function converges to a known Mahalanobis distance (RCA). The suggested similarity function exhibits superior performance over alternative Mahalanobis distances learnt from the same data. Its superiority is demonstrated in the context of image retrieval and graph based clustering, using a large number of data sets. 1

    Abstract

    No full text
    class recognition using relational object model

    Abstract

    No full text
    class recognition using relational object model
    corecore