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Leaf Counting: Fusing Network
Components for Improved Accuracy
Guy Farjon*, Yotam Itzhaky, Faina Khoroshevsky and Aharon Bar-Hillel

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be’er Sheva, Israel

Leaf counting in potted plants is an important building block for estimating their health

status and growth rate and has obtained increasing attention from the visual phenotyping

community in recent years. Two novel deep learning approaches for visual leaf counting

tasks are proposed, evaluated, and compared in this study. The first method performs

counting via direct regression but using multiple image representation resolutions to

attend leaves of multiple scales. The leaf count from multiple resolutions is fused using a

novel technique to get the final count. The second method is detection with a regression

model that counts the leaves after locating leaf center points and aggregating them. The

algorithms are evaluated on the Leaf Counting Challenge (LCC) dataset of the Computer

Vision Problems in Plant Phenotyping (CVPPP) conference 2017, and a new larger

dataset of banana leaves. Experimental results show that both methods outperform

previous CVPPP LCC challenge winners, based on the challenge evaluation metrics,

and place this study as the state of the art in leaf counting. The detection with regression

method is found to be preferable for larger datasets when the center-dot annotation is

available, and it also enables leaf center localization with a 0.94 average precision. When

such annotations are not available, the multiple scale regression model is a good option.

Keywords: image-based plant phenotyping, leaf counting, counting with convolutional neural networks, fusing

network components for counting, growth rate estimation

1. INTRODUCTION

Object counting is important for a variety of tasks in the agriculture and phenotyping
domains. Estimating the number of fruits, flowers, and trees helps farmers make better
decisions on cultivation practices, plant disease prevention, and the size of the harvest labor
force (Rahnemoonfar and Sheppard, 2017). For example, estimating the number of flowers in a
field can be used to predict harvest dates from peak flowering, track the response of flowering
to environmental conditions, and evaluate the effects of cultural practices (Adamsen et al., 2000).
The chemical thinning process of apple trees starts by counting the number of flowers during the
blossom period, for flowering level and peak day estimation (Farjon et al., 2019). Determination of
wheat grains quality is done by counting wheat seedlings in the field and estimating their density
(Liu et al., 2016).

In this study, we focus on the task of leaf counting. The number of leaves a plant has is one of
the visual key traits (phenotype) describing its development and growth (Dobrescu et al., 2017).
It enables growth rate estimation and is related to the health status of the plant and its yield
potential (Telfer et al., 1997; Walter and Schurr, 1999). Manually measuring the traits of the visual
plant is a slow, tedious, and expensive process (Jiang et al., 2019), and it usually requires the
presence of specialized investigators (Giuffrida et al., 2016). Hence, these traits are measured on
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a small random sample of plants, which might lead to a
measurement bias (Aich and Stavness, 2017). An accurate
automated leaf counting system will enable faster measurements
that will decrease costs, and improve the overall accuracy
of per-plant estimations (Aich and Stavness, 2017). Due to
the importance of this task, a Leaf Counting Challenge
(LCC) was initiated in recent years in the Computer Vision
Problems in Plant Phenotyping (CVPPP) community and public
benchmarks (Scharr et al., 2014; Bell and Dee, 2016; Minervini
et al., 2016) are available.

This study presents two network architectures for leaf
counting, one based on direct regression and the other on
combining detection with regression. For direct regression, we
suggest improving upon existing art by explicitly employing
fusion over multiple-scale analysis. The number of leaves is
regressed from multiple image resolutions, created by a Feature
Pyramid Network (FPN) (Xie et al., 2015), thus accounting
for both small and large leaves. For each scale, a network is
trained to provide both an estimation of the leaves count and
the variance of the estimation. The multiple estimates obtained
from the different image resolutions are then fused based on
their estimated variance. This method is termed Multiple-Scale
Regression (MSR). We examine several techniques for fusing the
estimators, including min-variance selection and a Maximum
Likelihood Estimation (MLE) solution.

The second proposed method treats counting as a two-stage
process, where leaf detection is done prior to count regression,
yet both are done in a single end-to-end network. Following
the density estimation literature (Xie et al., 2015, 2018), we
develop an algorithm employing “leaf center” point annotations
during training. At several stages, the detection network is
regressing a “heat map,” a map with Gaussians of pre-defined
parameters placed upon the annotated leaf centers (Lempitsky
and Zisserman, 2010). The heat map is gradually refined to
obtain more exact leaf positions, thus allowing better separation
between small adjacent leaves. An initial count estimate is
obtained by applying Non-Maxima Suppression (NMS) and
global summing layers. This detection-based estimate is fused
with additional features to provide the final count estimate
via direct regression. This method is termed Detection with
Regression Network (DRN). The training of the network is
driven by two losses accounting for the detection and count
regression accuracy.

The suggested counting methods were tested on the publicly
available LCC datasets containing tobacco and Arabidopsis
plants (Bell and Dee, 2016; Minervini et al., 2016), as well
as on a larger dataset of images of the banana plants.
Examples of images from the datasets can be seen in
Figure 1. Both methods obtained improvement over the
current state-of-the-art on the LCC datasets, evident by the
results obtained on a hidden test set held by the dataset
owners. While for small datasets, the methods are comparable
in performance, and DRN is preferable when a sufficient
sample size is available. This method, which also provides
detection of the individual location of the leaves, is hence
currently the leading leaf counting method to the best of
our knowledge.

The main contributions of this study are:

• It shows that merging ideas from detection and direct
regression methods in a single network provides improved
accuracy (compared to any other current method) in the leaf
counting task. Specifically, a detection refinement mechanism
is proposed based on repeated heat map regression with
decreasing Gaussian kernel size.

• It shows that for direct regression, using estimators from
multiple image scales is beneficial, but that it requires
careful fusion of the estimators based on additional
variance estimation.

• The methods suggested provide a new state-of-the-art in the
leaf counting from RGB images task, as measured on the
LCC challenge.

The entire code is freely accessible at https://github.com/farjon/
Leaf-Counting. This work is an extension of a previously
presented conference paper (Itzhaky et al., 2018), which was
supplemented in several important ways. First, the DRN was
improved by employing successive refinement of the heat maps
produced with Gaussian kernels of decreasing size. Second
and more important, careful experiments were conducted to
understand the role of data size on the LCC datasets and using
a novel larger dataset with 1,016 images of banana plants.
These experiments reveal that the DRN method is superior
to the MSR for a large enough dataset, a fact which was
not clear enough in the conference paper version. Finally, a
comprehensive comparison to existing art is provided, showing
that the suggested algorithms compare favorably with the best
current methods.

2. BACKGROUND

With the growing need for systematic plant
phenotyping (Großkinsky et al., 2015) and the development
of recent Convolutional Neural Network (CNN)-based
techniques (Ren et al., 2015; He et al., 2016), visual leaf
counting has attracted considerable attention (Giuffrida et al.,
2016; Dobrescu et al., 2017; Lu et al., 2017; Teimouri et al.,
2018; Jiang et al., 2019; Kuznichov et al., 2019). A basic but
appealing idea is to perform counting by using some standard
detection or segmentation network architecture (Ren et al.,
2015; Redmon et al., 2016; He et al., 2017; Lin et al., 2017b)
to detect the leaves. In this way, one also obtains information
additional to counting, the exact image locations of the leaves.
This information maybe valuable for applications requiring
further processing, like detecting diseases or examining the
morphological structure of the leaf. In Romera-Paredes and
Torr (2016) a segmentation-based approach was developed and
tested on the LCC dataset. First, the image goes through a Fully
Convolutional Network (FCN) providing a high-dimensional
feature map representation. This map is then used as input
for a Recurrent Neural Network (RNN) model in which each
layer application segments a different leaf. The leaf count
is the number of segmented objects. The study of Ren and
Zemel (2017) uses the same techniques as in Romera-Paredes
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FIGURE 1 | Data example of three different plants used in the experiments. (A) Rosette plant, (B) Tobacco plant, (C) Banana plant.

and Torr (2016), but in addition, offers the ability of instance
segmentation. A recent segmentation and counting network was
presented in Kuznichov et al. (2019), where new algorithms were
suggested for the generation of synthetic plant images. These
images are then used as data augmentation for network training.
The resulting network provides the state-of-the-art results in the
Leaf Segmentation Challenge (LSC),1 which is a segmentation
plus counting benchmark on the same datasets (Scharr et al.,
2014; Bell and Dee, 2016; Minervini et al., 2016) as the LCC.
However, such segmentation-based methods have a significant
drawback for counting since only successfully segmented leaves
are counted, and their results in the counting evaluation metric
are less competitive.

More direct approaches to counting use annotations
requiring less effort, like dot annotations, marking only the
object center (Arteta et al., 2016), or even just image-level
counts (Dobrescu et al., 2017). When dot annotations are
available, counting is often approached via a density estimation
approach (Xie et al., 2015, 2018). These methods are successful
for approximate counting of large object quantities (hundreds
or thousands, like crowds in stadiums, cars in large parking lots,
etc.), but are less suited for accurate counting of small quantities
as required in the leaf counting task. If only image-level counts
are available for training, counting tasks can be addressed by
a direct regression approach, where a regressor is learning a
direct function from image to count estimation (Dobrescu
et al., 2017; Lu et al., 2017). The natural regressor choice is an
adapted deep CNN. The advantages of this approach are the
simplicity of the algorithm, hence the ability to train it from a
smaller sample size, and the alleviation of the annotation burden.
The currently leading results reported on the leaf counting
CVPPP challenge datasets were obtained with a direct regression
approach (Dobrescu et al., 2017; Teimouri et al., 2018).

Considering such direct approaches, Giuffrida et al. (2016)
proposed a flat (non-deep) learning-based approach for leaf
counting in rosette plants. They used a supervised regression
model, applied to image-based descriptors learned in an
unsupervised manner. Teimouri et al. (2018) treat leaf counting

1https://competitions.codalab.org/competitions/18405.

as a classification task, where each possible count results in a
limited range is a different label. They use an ensemble of 20
similar models based on Inception-v3 architecture (Szegedy et al.,
2016), pre-trained on ImageNet (Deng et al., 2009), and fine-
tuned on the leaf counting datasets. They report good results but
their evaluation is partial, with 168 images randomly sampled
from the five LCC datasets (A1–A5). Therefore, the results
cannot be fully compared to LCC bench-marked results. In Aich
and Stavness (2017) the authors treated the counting task as a
two-staged task. First, they used SegNet (Badrinarayanan et al.,
2017) to isolate the plant from the background. Then, they used
the segmented mask and the RGB image as the input to a VGG-
16 based regressor. Though Aich and Stavness (2017) reports
better results than Giuffrida et al. (2016), they are inferior to
those of Dobrescu et al. (2017) in which a regression model based
on the ResNet-50 architecture (He et al., 2016) was suggested.
Trained on multiple leaf datasets and using data augmentation,
they obtained the winning results in the LCC event of 2017, and
the best LCC benchmark results prior to this study. The model
uses only the leaf count annotations while training. Giuffrida
et al. (2018) shows identical results on the LCC 2017 dataset
as in Dobrescu et al. (2017), but by using multi-modal data
(including near infrared channel and a fluorescence channel, in
addition to RGB images), the authors showed state-of-the-art
results on Cruz et al. (2016) dataset. However, when multi-modal
data is not available, the methods proposed in this study are with
superior accuracy.

3. METHODS

3.1. Image Datasets
Two datasets were used in the experiments:

• Leaf Counting Challenge data: The challenge includes four
different datasets termed A1–A4. Datasets A1, A2, and A4
contain images of the Arabidopsis plant and the A3 dataset
contains images of young tobacco plants. Datasets A1, A2,
and A3 are relatively small containing 128, 31, and 27 images,
respectively, while A4 is larger with 624 images. Images were
taken from a top viewpoint, using a camera positioned ∼1 m
above the plants, under controlled illumination conditions.
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FIGURE 2 | Creating representations at multiple resolutions from a standard

Convolutional Neural Network (CNN) (Lin et al., 2017a). Each such tensor

(termed P2 − P7) involves a X2 up-sampling of the representation at the higher

level (to get the rich semantics), and adding information from a corresponding

lower CNN level through 1× 1 convolutions (to add better spatial resolution).

The produced multiple scale representations are close to being “equivalent” in

the sense that a single classifier or regressor can be trained and applied to all

of them.

Each image contains a single plant, which was monitored
across several weeks (up to 7 weeks for some plants). Hence,
plants age varies between several days and several weeks. For
testing, the LCC organizers also provided the A5 dataset,
which is sampled from A1 to A4 test sets. This dataset was
created to test if models generalize well across datasets and
are not dataset-specific. In addition, a combined dataset was
created, which includes all images from A1 to A4, and was
termed Ac (A5 is a subset of Ac). More information is shown
in Scharr et al. (2014), Bell and Dee (2016), andMinervini et al.
(2016).

• Banana leaves (BL) data: This dataset is larger than the
LCC datasets, containing 1,016 images from a top viewpoint
collected at plantations in the north of Israel. This dataset
is different from the LCC dataset mainly since the leaves
are relatively large and elliptical. The banana leaves were
annotated using the via annotation tool (Dutta and Zisserman,
2019).

Each image was labeled in two annotation levels. The first is the
number of leaves, and the second is a leaf center dot annotation.
The size of the images varies between 441 × 441 and 2, 448 ×

2, 048, and they were resized to 800 × W where W was chosen
to keep the original aspect ratio. To enrich the datasets, random
transformations were applied including rotation, scaling, vertical
and horizontal flips.

3.2. Direct Regression Architecture and
Design
Direct regression algorithms are widely used for various
counting tasks (Aich and Stavness, 2017; Dobrescu et al., 2017;

Rahnemoonfar and Sheppard, 2017; Ubbens and Stavness, 2017;
Aich et al., 2018). For example (Dobrescu et al., 2017), the winner
of LCC 2017, uses the ResNet-50 architecture as a regressor.
The top classification layers of the network were removed and
replaced with a regression “head,” containing two fully connected
layers followed by a single leaf estimate output neuron. We
aim to improve upon Dobrescu et al. (2017) by considering
estimation at multiple scales. The regressor used is based on
an FPN architecture (Lin et al., 2017a), extending a backbone
network to produce multiple resolutions of representation. As
in Lin et al. (2017a), a backbone of ResNet-50 (He et al., 2016)
is used, trained on ImageNet data (Deng et al., 2009).

3.2.1. An FPN for Multiple Scale Representation
The input to the FPN is an image of arbitrary size, and the
output is a feature pyramid of proportionally sized tensor
representations at multiple levels. The FPN architecture aims to
provide a rich representation with semantic features typically
available at higher layers of a CNN, yet at multiple spatial
resolutions. To obtain this, tensor representations of increasing
spatial resolutions are created iteratively starting from the
highest level representation. A schematic view of this process
is shown in Figure 2. The pyramid used by the method
includes representation tensors denoted by P3 − P7 in Lin
et al. (2017a), where pyramid level Pj has a resolution of 2j

lower than the input. All pyramid levels have C = 256
channels. The details of the pyramid generally follow Lin
et al. (2017a) with a few modest differences, based on Lin
et al. (2017b). Specifically, we include the higher and more
semantic pyramid levels P6 and P7 instead of P2, which provides
better localization (less important for counting). Like Lin et al.
(2017b), P6 is obtained via a 3 × 3 stride-2 convolution
on ResNet-50 layer C5, and P7 is computed by applying
Rectified Linear Unit (ReLU) followed by a 3 × 3 stride-2
convolution on P6. A regression sub-model is then applied at
each scale.

3.2.2. Count Regression Sub-model
The regression sub-model includes two 3 × 3 ReLU convolution
layers with 256 output maps, followed by a global average
pooling operation, flattening the maps to a compact 256 ×

1 representation. This vector is fed into two fully connected
layers with decreasing sizes of 128 and 64, respectively, followed
by the output layer. This layer contains two output neurons
which are estimates of the mean and variance of the expected
number of leaves (as shown in details below). The architecture
is summarized in Figure 3. As in the RetinaNet (Lin et al.,
2017b) detection architecture, all the regressor sub-models share
their weights, so effectively the same regressor is applied to
each pyramid level. We hence use five different image pyramid
levels for gaining five different leaf count estimators, with
their fusion described in the section “fusing the predictors of
the sub-models.”

3.2.3. Modeling the Uncertainty of Each Sub-model
Following Kendall and Gal (2017), the regression modules have
two outputs, ŷ and σ̂ 2, corresponding to the expected leaf count
and its variance. The training data is a labeled sample of images
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FIGURE 3 | The Multiple-Scale Regression (MSR) architecture. The left side contains the backbone ResNet-50 network, followed by the Feature Pyramid Network

(FPN). On the right, the regression sub-model is displayed. Such a sub-model is attached to each Pj level of the FPN,with j = 3, . . . , 7.

{Ii, yi}
N
i=1 with yi being the leaf count label. We train the network

to minimize the following loss:

Lr =

N
∑

i=1

1

2
exp(−si) · ||ŷi − yi||

2 +
1

2
si (1)

where si = log σ̂i
2, and ŷi = ŷ(Ii), σ̂i = σ̂ (Ii) are the outputs

of the regressor over image i. This loss is applied independently
to the five scales and summed to get the total loss minimized.
Note that the loss is the log of a Gaussian density (up to an
additive constant), but with the mean and variance being input-
dependent estimates. This means that in image space regions
where the regression is not accurate (i.e., where large deviations
occur between ŷ and the true y, a larger σ̂ 2 is inferred to reduce
the loss. The opposite happens in areas of accurate prediction.

3.2.4. Fusing the Predictions of the Sub-models
The output of the count regression model is the prediction
of the mean and the variance for each of the scales. Given
count and variance estimates for the scales of the five FPN, new
fusion options beyond plain averaging become possible. Keeping
an input image index i fixed (and hence omitted), denote the

multiple estimators for this image by (ŷj, σ̂ j)
J
j=1. One intuitive

way would be to choose the model with the lowest degree of
uncertainty, i.e., the one with the lowest predicted variance for
the specific input image:

ŷ = ŷk with k = argmin(σ̂ j) (2)

While this choice is intuitive, we know that the MLE for the
consolidation of Gaussian distributions is different. Specifically,
the MLE has the closed-form solution:

ŷ =

∑J
j=1

1

(σ̂ j)2
ŷj

∑J
j=1

1

(σ̂ j)2

(3)

It should be noted that the second method assumes observation
independence between the results of the sub-models. This
assumption is not fulfilled, since the sub-models receive as
input similar representation at different resolutions. However, in

practice, the fusion method given by Equation (3) was performed
better and was used as default in the experiments.

3.3. Detection-Based Counting
In this approach, the network is taught to first detect leaf centers,
using dot annotation provided at training, and only then count
them. Toward this task, a two-dimensional heat map was created
for every training image to serve as an intermediate output
goal. In the heat map, a two-dimensional Gaussian is placed
around each leaf center (as shown in detection sub-model section
regarding Gaussian size). Each Gaussian was normalized such
that its peak pixel (i.e., the leaf center location) equals to 1. The
network was trained to estimate this heat map, and then use it to
regress the number of leaves. The heat map, in turn, is estimated
using an iterative process in which a coarse initial heat map is
gradually refined through the network stages to reach a final heat
map of fine spatial resolution.

Like in theMSRmodel, the initial representation used is based
on the FPN architecture with a ResNet-50 backbone. The model
does not employ multiple scale analysis, but the FPN is used
nevertheless due to the combination of semantic features from
the higher layers and the high spatial resolution obtained at its
lower layers. A detection sub-model regressing the heat map is
placed on top of the high-resolution pyramid scale (P3). Then, a
count regression sub-network accepts the heat map and tensors
leading to it as input and predicts the final count output. The
architecture is summarized in Figure 4.

3.3.1. Detection Sub-model
The detection sub-model is a small FCN, containing four 3 × 3
ReLU convolutional layers with 256 filters each. The final layer
in the sub-model contains a single 2D map approximating the
ground truth leaf center heat map, and it is produced by an
additional 1 × 1 ReLU convolutional layer with a single filter.
p̂ and p denote the value of the network estimation and the
target heat map, respectively, for a single map location (dropping
location and layer indices for convenience). The minimized loss
is a weighted smooth-L1 loss

Ld(p̂, p) =

{

(1− w) ·Huber(p̂, p) , where p > 0

w ·Huber(p̂, p) , otherwise
(4)
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FIGURE 4 | The Detection with Regression Network (DRN) architecture. On the left side, the backbone ResNet-50 with the FPN is displayed, from which P3

representation is taken for further processing. On the right, the detection sub-model is presented, including four 3× 3 ReLU convolutional layers repeatedly regressing

the leaf heat map. A counting head summarizes the final heat map estimate into an initial count estimate. The final count estimate is regressed from a combination of

the initial estimate and a feature vector extracted from the final heat map.

With

Huber(p̂, p) =

{

|p̂− p| − 1
2 , where |p̂− p| ≥ 1

1
2 (p̂− p)2 , otherwise

(5)

The weight parameter w (w = 0.1 in the experiments) keeps the
total weight of positive pixels in the heat-map high. This directs
the optimization toward accurate regression of these values,
rather than the pixels with the value zero, which outnumber them
considerably. Although the final heat map is predicted following
all four convolutional layers, each of those layers predicts a
heat map independently using an additional loss term Lk

d
for

k = 1, . . . , 4. The ground truth heat maps guiding the estimates
produced by early convolutional layers were created using larger
Gaussian kernels. Hence the first convolutional layers estimate a
coarse heat-map (created with a 7× 7 Gaussian kernel), in which
sometimes Gaussians may overlap, while the final layer predicts a
finer heat-map (created with a 3×3 Gaussian kernel). Each of the
layers in the sub-model are guided using the same loss function
as the final loss. Denoting by pkij, p̂

k
ij the true and predicted values

at location (i, j) of layer k, the minimized detection loss is the sum
of losses overall pixels and layers:

Ld =

4
∑

k=1

Lkd =

4
∑

k=1

∑

{(i,j)}

Ld(p̂
k
ij, p

k
ij) (6)

3.3.2. Counting Sub-network
Given an estimated heat-map, an initial count estimate can be
based on finding the number of Gaussian centers. Ideally, this
number is the required leaf count. However, assuming imperfect
detection, it is preferable not to use it directly as the final count,
but as a strong feature provided to the final regressor. To properly
count the Gaussian centers, we suggest to incorporate a smooth
NMS procedure, shrinking each Gaussian to a delta function,

followed by a global sum operation. Hence, the following NMS
function is applied to the estimated heat map P̂ ∈ RN×M .

Q = MaxPool(P̂, (K,K)) (7)

P̂NMS = P̂ · exp(−β · |P̂ − Q|)

WhereMaxPool(X, F) is the operation of max-pooling with stride
1 and an F filter size. Following this operation, a pixel in the
output map P̂NMS keeps a value close to its original value in P̂ if it
was the highest value of P̂ in a K ×K neighborhood (as shown in
example Figure 5). The experiments indicate that large β values
were effective, entailing a sharp NMS keeping only the winners.
K is chosen to be the same value used in the heat map creation,
so a single pixel is expected to remain active from a full Gaussian.

The NMS operation keeps mostly the pixels that are local
maxima, but it does not remove noise, so P̂NMS still contains
small values in non-center pixels. We hence apply a smooth step
function (sigmoid) layer of the form y(x) = 1

1+e−ρ(x−t) to keep

only values greater than some threshold (t = 0.8, ρ = 15 were
used). The result is a detection map D̂ containing the estimated
leaf centers as its active pixels. A global sum pooling layer applied
to D̂ then gives a single number CD̂, the detection-based estimate
for the leaf count.

Beyond the detection-based estimate CD̂, additional features
are used for the final count regression. A Global Average Pooling
(GAP) operation is applied to the fourth convolutional layer (the
layer predicting the final heat map), obtaining a 256-dimensional
feature vector V4. The final count estimator Ĉ is obtained by
applying linear regression in the final layer, i.e., Ĉ = W · [V4,CD̂]
where [V4,CD̂] is a concatenated 257 features vector. We train
the final counter to minimize an L1 loss estimated based on the
true count, which is added to the detection loss (Equation 6).

4. RESULTS AND DISCUSSION

We describe next the training procedure and evaluation metrics.
Then, the results of the two suggested methods are presented and
compared to current art methods. Finally, performance analysis
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FIGURE 5 | Smooth Non-Maxima Suppression (NMS) procedure example: (A) an estimated heat map P̂. (B) The resulting map Q after applying the MaxPool

operation with K = 2. Local maxima are highlighted in red. (C) the output map P̂NMS.

of the suggested method is done using visualization, ablation
studies, and experiments with varying sample sizes.

4.1. Training Procedure
Following Dobrescu et al. (2017), validation results were obtained
using a 4-fold cross-validation procedure, and the average results
over the folds were reported. Test results were obtained by
evaluating the model on a hidden held-out set kept by the
challenge organizers (Scharr et al., 2014; Bell and Dee, 2016;
Minervini et al., 2016) (the model predictions were sent to the
LCC organizers for evaluation). The tested model was trained
over the accumulated dataset, with 75% of the data used for
model fitting and 25% as a validation set for the early stopping
criterion. We did not use the provided foreground plant mask in
either of the models. In all experiments, ADAM (Kingma and Ba,
2014) optimizer was used with a learning rate of 10−5.

4.2. Evaluation Metrics
For count regression evaluation, we used the metrics provided
by the LCC workshop organizers (as shown in Dobrescu et al.,
2017). C and Ĉ denote the true and estimated count, respectively,
and these include

• The average distance E[Ĉ−C], where E[·] denotes the average
over test images. This is not used as an accuracy score, but
it measures the bias of the predictor (its tendency to over or
underestimate the count)− DiC.

• The average L1 distance E[|Ĉ − C|]− |DiC|.
• The fraction of accurate agreement E[1Ĉ==C] −

agreement [%].
• The Mean-Squared Error E[(Ĉ − C)2]−MSE.

For estimation of the detection performance, a recall-precision
curve was used with the Average Precision (AP) metric—the area
under the curve. To determine if a leaf detection (an active point
in D̂) is a hit or a miss we use the criterion introduced in the
Percentage of Correct Keypoints (PCK) computation (Yang and
Ramanan, 2013). With PCK, a leaf detection point is considered
a hit if the distance between it and a ground truth leaf center is
lower than α · max(w, h) where (w, h) are the width and height
of the bounding boxes surrounding the entire object (plant).
Like in Yang and Ramanan (2013) we used α = 0.1 to test the
detection performance.

4.3. Results and Comparison to Previous
Work
Cross-validation results on the datasets of the LCC challenges,
as well as the new banana leaf dataset, are reported in Table 1.
The results are more stable for datasets A1 and A4, which are
larger. There is no clear winner in this examination, but the
proposed MSR and DRN have a slight advantage over the LCC
winner (Dobrescu et al., 2017). Also, it can be seen that when
the training set is small, the MSR method has an advantage,
while for larger datasets (A4 and BL) the DRN method usually
performs better. In Table 2, the results of the test held-out set of
the LCC are presented and compared to current best methods.
The results here are more decisive. First, the MSR and DRN
methods have an advantage over previous art for most datasets
and metrics. Second, DRN has a clear leading position overall
methods (including MSR) in all the three performance indices
(|DiC|, agreement, and MSE). This is specifically seen in the large
sample and heterogeneous conditions “all” and A5.

4.4. Detection and Regression Network
Analysis
Some examples of the performance of the detectors are shown
in Figure 6. As can be seen from these examples, the estimated
Gaussian heat map successfully finds the vast majority of the
leaves. Misses occur mostly for close leaves, high leaf occlusion
cases, and very small leaves. For example, row c in Figure 6 shows
a typical leaf miss detection. Notice that the leaf is extremely small
and that its Gaussian is too close to other Gaussians.

Table 3 shows the metric scores for several ablated model
versions on the largest data set of the LCC, A4. The results
indicate that each of the examined elements contributes to
the performance of the detector. Specifically, combining the
detection with a final regression and the usage of multiple
intermediate losses for detection is of high importance. This
model obtained 0.94 AP when trained on 80% of the Ac dataset
and validated on 20% of it, indicating the achievement of both
high recall and high precision. For example, for a recall value of
0.7, the precision is 0.987.

4.5. Multiple Scale Regression Analysis
Table 4 presents the results of intermediate algorithm versions
between the baseline of Dobrescu et al. (2017) and the
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TABLE 1 | Cross-validation results on separate datasets.

Dataset DiC |DiC| (%) MSE

Train Test MSR DRN Dobrescu

et al. (2017)

MSR DRN Dobrescu

et al. (2017)

MSR DRN Dobrescu

et al. (2017)

MSR DRN Dobrescu

et al. (2017)

A1 A1 −0.06 0.03 −0.81 0.53 0.56 0.94 58 51 25 0.78 0.7 1.38

A2 A2 0.61 0.73 −2.38 1.26 2.05 2.38 43 22 38 3.71 7.82 12.9

A3 A3 0.14 −0.45 −0.57 1.07 1.6 1.43 30 21 14 1.89 3.83 2.57

A4 A4 0.03 −0.21 0.1 0.71 0.6 0.91 45 49 35 1.15 0.85 1.54

Ac A1 0.02 0.21 0.28 0.66 0.6 0.53 44 45 56 0.86 0.7 0.72

Ac A2 0.63 0.45 −0.38 1.09 0.86 0.88 35 52 38 3.33 2.44 1.38

Ac A3 0.14 0.02 0.71 0.71 0.75 0.71 41 29 57 0.94 0.83 1.57

Ac A4 −0.01 0.06 0.12 0.65 0.63 0.69 47 51 46 0.97 1.0 1.01

BL BL 0.05 0.09 0.07 0.41 0.37 0.46 61 69 56 0.43 0.42 0.51

Results are presented for the algorithms: Multiple Scale Regression (MSR), Detection and Regression Network (DRN), and direct regression of Dobrescu et al. (2017), the LCC 2017

challenge winner. The best results for each metric is presented in bold.

TABLE 2 | Results of the MSR and the DRN on the held-out test set, with comparison to the winner of the 2017 LCC (Dobrescu et al., 2017) and to Giuffrida et al. (2018)

which shows identical results.

A1 A2 A3 A4 A5 All

DiC

MSR −0.27 (1.21) −0.22 (0.67) −0.04 (1.61) 0.15 (1.08) 0.10 (1.22) 0.07 (1.22)

DRN −0.24 (0.94) −0.67 (1.00) −0.25 (1.01) 0.26 (1.09) 0.12 (1.08) 0.09 (1.08)

Dobrescu et al. (2017) and Giuffrida et al. (2018) −0.39 (1.17) −0.78 (1.64) 0.13 (1.55) 0.29 (1.10) 0.25 (1.21) 0.19 (1.24)

Aich and Stavness (2017) −0.33 (1.38) −0.22 (1.86) 2.71 (4.58) 0.23 (1.44) 0.80 (2.77) 0.73 (2.72)

Giuffrida et al. (2016) −0.79 (1.54) −2.44 (2.88) −0.04 (1.93) – – –
∣

∣DiC
∣

∣

MSR 0.70 (1.02) 0.44 (0.53) 1.14 (1.12) 0.76 (0.78) 0.84 (0.90) 0.83 (0.90)

DRN 0.48 (0.83) 0.67 (1.00) 0.75 (0.72) 0.75 (0.83) 0.73 (0.80) 0.72 (0.81)

Dobrescu et al. (2017) and Giuffrida et al. (2018) 0.88 (0.86) 1.44 (1.01) 1.09 (1.10) 0.84 (0.76) 0.90 (0.85) 0.91 (0.86)

Aich and Stavness (2017) 1.00 (1.00) 1.56 (0.88) 3.46 (4.04) 1.08 (0.97) 1.66 (2.36) 1.63 (2.30)

Giuffrida et al. (2016) 1.27 (1.15) 2.44 (2.88) 1.36 (1.37) – – –

%

MSR 57.6 55.6 32.1 42.9 41.7 42.3

DRN 63.6 55.6 35.7 43.5 42.6 43.7

Dobrescu et al. (2017) and Giuffrida et al. (2018) 33.3 11.1 30.4 34.5 33.2 32.9

Aich and Stavness (2017) 30.3 11.1 7.1 29.2 23.8 24.0

Giuffrida et al. (2016) 27.3 44.4 19.6 – – –

MSE

MSR 1.48 0.44 2.54 1.19 1.50 1.49

DRN 0.91 1.33 1.07 1.25 1.17 1.17

Dobrescu et al. (2017) and Giuffrida et al. (2018) 1.48 3.00 2.38 1.28 1.53 1.56

Aich and Stavness (2017) 1.97 3.11 28.0 2.11 8.28 7.90

Giuffrida et al. (2016) 2.91 13.33 3.68 – – –

A5 dataset is a sample from A1 to A4 datasets. “All” dataset is a combination of all the datasets (A1–A4). The reported results are the mean and standard values of each metric. It is

noticeable that the DRN algorithm gets a better score in almost each of the indices. The best results for each metric is presented in bold.

suggested multiple-scale regression. The results are of cross-
validation experiments on the A1 dataset. The baseline model
following Dobrescu et al. (2017) includes a ResNet-50 backbone,

global average pooling on top of the C5 convolution layer, two
fully connected layers in decreasing sizes, and a final single
neuron predictor. As can be seen, two main steps improve the
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FIGURE 6 | Leaf center detection examples for four images. Column 1: Input images with their ground truth point annotations. Column 2: Ground truth Gaussian

heat maps generated using human annotation. Column 3: Gaussian heat maps inferred by the model. Column 4: Leaf center predictions after the non-maxima

suppression operation. Examples “a” and “b” present successful detection cases. Examples “c” and “d” include miss detection examples and wrong annotation found

by the model (a miss-detection is pointed with a red arrow, wrong annotation with a green arrow).

TABLE 3 | Ablation table for the DRN.

Condition DiC |DiC| (%) MSE

1. Full model −0.02 0.6 49 0.85

2. Fixed GT heat maps 0.02 0.63 48 0.93

3. No data Aug. 0.1 0.71 42 1.09

4. No multiple losses 0.6 1.14 41 4.91

5. Detection only 0.78 1.36 40 7.7

The table includes cross-validation results on the A4 dataset. 1. The full model. 2. Using

fixed size kernels for generating the ground truth Gaussians of the heat maps. 3. Training

without data augmentation. 4. Using a single detection loss at the end of the detection

sub-model. 5. Using count estimator C
D̂
as the single feature for count regression.

performance over this baseline: moving to pyramid features
and using the maximum likelihood technique for the fusion of
the estimators.

The larger dataset BL enables measurement of the relation
between sample size and counting accuracy in a larger domain
than before. Figure 7 shows |DiC|, MSE, and counting agreement
as a function of training set size. In the experiment, 150 images
were held out for accuracy estimation, and models were trained
using subsets of 50, 100, 250, 450, 700, and 866 images from
the BL dataset. The presented results are the average of five
experiments with different train-test splits. It can be seen that the
DRNmodel significantly benefits from additional examples in the
explored range.

4.6. Inference Speed
We implemented the model in Python, using Keras and
TensorFlow framework. We used a single 1080-Ti GTX Nvidia
GPU for training and testing. While training the models takes
up to 24 h (on the largest dataset), the inference is fast. MSR
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TABLE 4 | Incremental improvements over a baseline in the direct regression model, cross-validation results on A1 dataset.

Index Input Loss Description DiC |DiC| Agreement (%) MSE

1 C5 L2 loss Baseline 0.15 0.62 48 0.9

2 P3 L2 loss pyramid 1 level −0.07 0.55 53 0.76

3 P3 − P7 L2 loss Avg fuse 0.18 0.66 44 0.91

4 P3 − P7 Gauss min σ̂ fuse −0.08 0.62 45 0.82

5 P3 − P7 Gauss MLE fuse −0.06 0.53 58 0.78

The table rows present the following: 1. A baseline is similar to Dobrescu et al. (2017) (the implementation of it). 2. Replacing the input of the regressor with the middle pyramid level

P5. 3. Using five pyramid levels, averaging the results. 4. Using five pyramid levels with the min-sigma fusion of the predictors (Equation 2). 5. Five pyramid levels with MLE fusion

(Equation 3).

FIGURE 7 | Detection and Regression Network network accuracy as a function of dataset size for BL data, measured using the LCC evaluation criteria.

(A) Agreement index. (B) MSE index. (C)
∣

∣DiC
∣

∣ index. the method earns, though with diminishing returns, from samples including many hundreds of data points.

reaches 20 FPS (0.05 s per image) and DRN reaches 7 FPS (0.14 s
per image) for images of average size 450 × 460, typical for all
LCC datasets except for A3. As expected, MSR is significantly
faster than DRN since it uses a direct regression approach. For
A3, containing larger images (2, 448× 2, 048), inference took on
average 0.34 s for MSR and 0.43 for DRN.

4.7. Discussion
The methods developed here have several limitations, related
to difficulty factors like leaf occlusion, the number of plants
in the image, illumination conditions, and leaf shape diversity.
While occlusion is present in the LCC and BL datasets, it is
not severe, as can be seen from the high rates of the count
agreement and low |DiC|. Specifically, the |DiC| is lower
than one on all the datasets, indicating that on average at most
one leaf is missed. Due to the occlusion problem, however, the
current algorithmic framework is limited to handle 1–2 dozens
of leaves at most. Beyond this, occlusion becomes dominant,
as no single viewpoint exists from which all the leaves can be
seen. For handling mature plants with many dozens of leaves,
a single top viewpoint is not enough. Instead, multiple views
including side views should be used, and registration of the
cameras is required to avoid double counting of leaves across
the viewpoints.

The models were trained using datasets containing a single
plant in each image. They do not include mechanisms for
handling the detection of multiple plants and the assignment of
leaves to the correct plant. However, when there are several plants
in a single image, a simple solution may incorporate an object

detector as the first stage to detect each of the plants, and then
count leaves in each detected bounding box independently. Such
a two-stage method was applied successfully in Khoroshevsky
et al. (2020) for counting wheat spikelets in a spike and bananas
in a bunch.

The models suggested here were trained on the LCC and BL
datasets, which are limited in viewpoint, illumination conditions,
and leaf shape type. If one of these conditions is changed, for
example having images taken outdoors rather than in a plantation
illumination, re-training of the models would be required to
cope with it. While re-training is required, it is likely that the
architecture details will not require significant changes. To enable
easier re-training, and in some cases even avoid it completely,
domain adaptation methods as suggested by Giuffrida et al.
(2019) can be utilized.

5. CONCLUSIONS

The two proposed counting methods improve upon the state of
the art results on the test set of the LCC. The better strategy
depends on the dataset size. For smaller datasets, multiple-scale
regression has a slight advantage, but for a larger dataset with
several hundred images the detection-basedmethod is preferable.
From an annotation effort point of view, the detection-based
approach is more demanding due to its reliance on leaf dot
annotation. On the other hand, it provides leaf detection
capabilities in addition to counting.

For the detection-based pipe, themost important contributing
element is the fusion of the detection results with a regression
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component. Without it, this approach is inferior in all indices.
For the multiple-scale regression approach, an FPN-based
representation is helpful, but fusion must be done carefully
using confidential information. An interesting and non-trivial
direction may be to try and merge the advantages of both
methods in a single architecture, providing detection with
regression at multiple scales.

Interesting possible extensions of this study may be adapting
it to specific agricultural tasks, like in-field leaf counting of weed,
or growth-rate estimation in a plantation. In addition, while the
suggested methods were developed for leaf counting they can be
extended to other counting tasks, like counting flowers or fruits
on a tree.
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