63 research outputs found

    Molecular scattering and fluorescence in strongly confined optical fields: spectroscopy, sensing and signal processing

    Get PDF

    Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission

    Full text link
    We compute the decay rates of emitters coupled to spheroidal nanoantennas made of gold, copper, silver, and aluminum. The spectral position of the localized surface plasmon-polariton resonance, the enhancement factors and the quantum efficiency are investigated as a function of the aspect ratio, background index and the metal composing the nanoantenna. While copper yields results similar to gold, silver and aluminum exhibit different performances. Our results show that with a careful choice of the parameters these nanoantennas can enhance emitters ranging from the UV to the near-IR spectrum.Comment: 7 pages, 10 figure

    Highly efficient interfacing of guided plasmons and photons in nanowires

    Full text link
    Successful exploitations of strongly confined surface plasmon-polaritons critically rely on their efficient and rapid conversion to lossless channels. We demonstrate a simple, robust, and broad-band butt-coupling technique for connecting a metallic nanowire and a dielectric nanofiber. Conversion efficiencies above 95% in the visible and close to 100% in the near infrared can be achieved with realistic parameters. Moreover, by combining butt-coupling with nanofocusing, we propose a broad-band high-throughput near-field optical microscope.Comment: 5 figure

    Coherent interaction of a metallic structure with a single quantum emitter: from super absorption to cloaking

    Full text link
    We provide a general theoretical platform based on quantized radiation in absorptive and inhomogeneous media for investigating the coherent interaction of light with metallic structures in the immediate vicinity of quantum emitters. In the case of a very small metallic cluster, we demonstrate extreme regimes where a single emitter can either counteract or enhance particle absorption by three orders of magnitude. For larger structures, we show that an emitter can eliminate both scattering and absorption and cloak a plasmonic antenna. We provide physical interpretations of our results and discuss their applications in active metamaterials and quantum plasmonics

    Large suppression of quantum fluctuations of light from a single emitter by an optical nanostructure

    Full text link
    We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a single emitter coupled to an optical nanostructure. We find that such hybrid system can lead to the creation of squeezed states of light, with quantum fluctuations significantly below the shot noise level. Moreover, the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space. A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway to its manipulation and applications on the nanoscale with state-of-the-art setups.Comment: 10 pages, 5 figure

    Plasmon spectra of nanospheres under a tightly focused beam

    Full text link
    We study the modification of the far-field cross sections and the near-field enhancement for gold and silver nanospheres illuminated by a tightly focused beam. Using a multipole-expansion approach we obtain an analytical solution to the scattering problem and provide insight on the effects of focusing on the optical response. Large differences with respect to Mie theory are found especially when the nanoparticle supports quadrupole or higher-order resonances.Comment: 19 pages, 7 figure

    Light scattering by an oscillating dipole in a focused beam

    Get PDF
    The interaction between a focused beam and a single classical oscillating dipole or a two-level system located at the focal spot is investigated. In particular, the ratio of the scattered to incident power is studied in terms of the oscillator's scattering cross section and the effective focal area. Debye diffraction integrals are applied to calculate it and results are reported for a directional dipolar wave. Multipole expansion of the incident beam is then considered and the equivalence between this and the Debye diffraction approach is discussed. Finally, the phase change of the electric field upon the interaction with a single oscillator is studied.Comment: 9 pages, 6 figure
    corecore