642 research outputs found

    Object-based assessment of satellite precipitation products

    Get PDF
    An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Climate Prediction center MORPHing technique (CMORPH), and Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season

    An object-based approach for verification of precipitation estimation

    Get PDF
    Verification has become an integral component in the development of precipitation algorithms used in satellite-based precipitation products and evaluation of numerical weather prediction models. A number of object-based verification methods have been developed to quantify the errors related to spatial patterns and placement of precipitation. In this study, an image processing technique known as watershed transformation, capable of detecting closely spaced, but separable precipitation areas, is adopted in the object-based approach. Several key attributes of the segmented precipitation objects are selected and interest values of those attributes are estimated based on the distance measurement of the estimated and reference images. An overall interest score is estimated from all the selected attributes and their interest values. The proposed object-based approach is implemented to validate satellite-based precipitation estimation against ground radar observations. The results indicate that the watershed segmentation technique is capable of separating the closely spaced local-scale precipitation areas. In addition, three verification metrics, including the object-based false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill of precipitation estimates in depicting the spatial and geometric characteristics of the precipitation structure against observations

    A satellite-based global landslide model

    Get PDF
    Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM), a machine learning algorithm. The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed

    Changes in the Exposure of California’s Levee-Protected Critical Infrastructure to Flooding Hazard in a Warming Climate

    Get PDF
    Levee systems are an important part of California\u27s water infrastructure, engineered to provide resilience against flooding and reduce flood losses. The growth in California is partly associated with costly infrastructure developments that led to population expansion in the levee protected areas. Therefore, potential changes in the flood hazard could have significant socioeconomic consequences over levee protected areas, especially in the face of a changing climate. In this study, we examine the possible impacts of a warming climate on flood hazard over levee protected land in California. We use gridded maximum daily runoff from global circulation models (GCMs) that represent a wide range of variability among the climate projections, and are recommended by the California\u27s Fourth Climate Change Assessment Report, to investigate possible climate-induced changes. We also quantify the exposure of several critical infrastructure protected by the levee systems (e.g. roads, electric power transmission lines, natural gas pipelines, petroleum pipelines, and railroads) to flooding. Our results provide a detailed picture of change in flood risk for different levees and the potential societal consequences (e.g. exposure of people and critical infrastructure). Levee systems in the northern part of the Central Valley and coastal counties of Southern California are likely to observe the highest increase in flood hazard relative to the past. The most evident change is projected for the northern region of the Central Valley, including Butte, Glenn, Yuba, Sutter, Sacramento, and San Joaquin counties. In the leveed regions of these counties, based on the model simulations of the future, the historical 100-year runoff can potentially increase up to threefold under RCP8.5. We argue that levee operation and maintenance along with emergency preparation plans should take into account the changes in frequencies and intensities of flood hazard in a changing climate to ensure safety of levee systems and their protected infrastructure
    corecore