2,529 research outputs found

    Interleaved Parton Showers and Tuning Prospects

    Full text link
    General-purpose Monte Carlo event generators have become important tools in particle physics, allowing the simulation of exclusive hadronic final states. In this article we examine the Pythia 8 generator, in particular focusing on its parton-shower algorithms. Some relevant new additions to the code are introduced, that should allow for a better description of data. We also implement and compare with 2 to 3 real-emission QCD matrix elements, to check how well the shower algorithm fills the phase space away from the soft and collinear regions. A tuning of the generator to Tevatron data is performed for two PDF sets and the impact of first new LHC data is examined

    Naturalness bounds in extensions of the MSSM without a light Higgs boson

    Full text link
    Adopting a bottom-up point of view, we make a comparative study of the simplest extensions of the MSSM with extra tree level contributions to the lightest Higgs boson mass. We show to what extent a relatively heavy Higgs boson, up to 200-350 GeV, can be compatible with data and naturalness. The price to pay is that the theory undergoes some change of regime at a relatively low scale. Bounds on these models come from electroweak precision tests and naturalness, which often requires the scale at which the soft terms are generated to be relatively low.Comment: 18 pages, 5 figures. v2: minor revision, added references. v3,v4: some numerical correction

    Low Scale Flavor Gauge Symmetries

    Full text link
    We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.Comment: 24 pages + appendices; v2) Refs. added and numerical examples improved. Results unchanged; v3) small typos in appendix B correcte

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)

    Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV

    Get PDF
    A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → μν and J/ψ → μ+μ− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
    corecore