2 research outputs found
Preclinical lead optimization of a 1,2,4-triazole based tankyrase inhibitor
Abstract
Tankyrases 1 and 2 are central biotargets in the WNT/β-catenin signaling and Hippo signaling pathways. We have previously developed tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly to the adenosine binding site of the tankyrase catalytic domain. Here we describe a systematic structure-guided lead optimization approach of these tankyrase inhibitors. The central 1,2,4-triazole template and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South moieties were altered by introducing different building blocks defined as point mutations. The systematic study provided a novel series of compounds reaching picomolar IC₃₀ inhibition in WNT/β-catenin signaling cellular reporter assay. The novel optimized lead 13 resolves previous atropisomerism, solubility, and Caco-2 efflux liabilities. 13 shows a favorable ADME profile, including improved Caco-2 permeability and oral bioavailability in mice, and exhibits antiproliferative efficacy in the colon cancer cell line COLO 320DM in vitro
Development of a 1,2,4-triazole-based lead tankyrase inhibitor:part II
Abstract
Tankyrase 1 and 2 (TNKS1/2) catalyze post-translational modification by poly-ADP-ribosylation of a plethora of target proteins. In this function, TNKS1/2 also impact the WNT/β-catenin and Hippo signaling pathways that are involved in numerous human disease conditions including cancer. Targeting TNKS1/2 with small-molecule inhibitors shows promising potential to modulate the involved pathways, thereby potentiating disease intervention. Based on our 1,2,4-triazole-based lead compound 1 (OM-1700), further structure–activity relationship analyses of East-, South- and West-single-point alterations and hybrids identified compound 24 (OM-153). Compound 24 showed picomolar IC₅₉ inhibition in a cellular (HEK293) WNT/β-catenin signaling reporter assay, no off-target liabilities, overall favorable absorption, distribution, metabolism, and excretion (ADME) properties, and an improved pharmacokinetic profile in mice. Moreover, treatment with compound 24 induced dose-dependent biomarker engagement and reduced cell growth in the colon cancer cell line COLO 320DM