3 research outputs found

    Development of an efficient future energy storage system incorporating fluidized bed of micro-particles:English

    Get PDF
    This project focuses on the development of efficient energy storage systems by addressing problems commonly encountered in zinc bromide flow batteries. For example, the kinetics of charge, a discharge onto plane electrodes, can be slow, affecting the ability of such a cell to restitute energy quickly to an external load; zinc deposition is also prone to the formation of dendrites, which can become detached from the electrode substrate and reduce the storage capacity of the battery, while those dendrites can also be responsible for damage to the membrane, separating the anolyte and the catholyte. The project also incorporates both theoretical modelling and simulation two using different software packages (ANSYS and COMSOL). In this project, we design a novel fluidized bed electrode for the zinc-bromine (ZnBr2) flow battery, particularly concentrating on its anode. This is achieved by 1. Simulating electrolyte flow to identify reactor shapes and flow parameters that allow large electrolyte volumes to be processed and to support the fluidization of particles. 2. Fabricating an experimental rig from the identified geometry. 3. Carrying out extensive electrochemical testing (cyclic voltammetry, Electrochemical Impedance Spectroscopy, chronopotentiometry) to validate the model. The key component of the design is its use of a fluidized bed electrode where particles support the transfer of electron within the cell and provide a locus for electrodeposition of the zinc, improving the kinetics of electron transfer during the charging and discharging cycle. The particles used in the fluidized bed reactor possess intrinsic chemical resistance to the solution components and abrasion

    Practical Approach for Elements within Incorporated Charged Zinc Particles in an Anode Zinc Reactor of a Fabricated Zinc Bromine Battery Cell System (ZnBr2) with Fitting Materials

    No full text
    Batteries with different chemistries and designs encounter various (redox reactions) to store energy through applying charges and discharges rates. Redox flow batteries systems such as zinc bromine batteries cells systems (ZnBr2) can be enclosed with high surface area anode electrodes (reactors) and charged with some amount of added carbon particles for zinc deposition. The electrochemical reactions within a fabricated ZnBr2 battery cell system have been investigated with the coupled inlets and outlets brass fitting materials (15mm and 30mm) of different anode and cathode electrolyte compositions. SEM analysis was explored on some charged particles collected from the anode reactor to identify all the existing elements within the deposited charged zinc particles after several charges. The investigated zinc particles were between 254 microns to 354 microns. The electrolyte composition includes 3 moles of KBr (535.51 grams), 1 mole of KCl (111.89 grams) as the cathode side electrolyte and 3 moles of ZnBr2 (649 grams), 1 mole of ZnCl2 (205 grams), and 1M of KCl (111.826 grams) as the anode electrolyte solution. Originally, this journal paper has discovered the importance of coupling chemically resistance materials to ZnBr2 cells as investigated on the fabricated ZnBr2 cell that was initially converted to a CuZn2 battery cell system and reverted to the ideal ZnBr2 cell system before using an SEM technique to identify separately the present elements

    Practical Development of a ZnBr2 Flow Battery with a Fluidized Bed Anode Zinc-Electrode

    No full text
    The penetration of renewable sources (solar and wind power) into the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage devices into the power system network. Zinc-bromine batteries systems among other energy storage technologies has appeared as one of the best options. This paper presents the performance of three different electrodes feeder materials (carbon, nickel and a titanium) coupled and investigated within a fabricated ZnBr2 cell system via numerical modelling, DDPM+DEM model in ANSYS Fluent to simulate an incorporated anode zinc-electrode and COMSOL Multiphysics for the electrochemical behavior of the cell. After introducing briefly other alternatives to store energy, ZnBr2 cell systems, and its mode of operation were then discussed, before focusing on the numerical modelling and simulation and the laboratory experiments. Several extensive electrochemical experiments were implemented on the cell to achieve fast deposition of zinc onto the electrode surface during charge and fast dissolution during discharge for high performance. The mechanical action of the fluidised design of electrode is intended to improve deposit morphology, obviate the risk of dendrite growth and provide high transport rates of reactant to and from the active electrode surface. In conclusion, this paper has analyzed electrochemical techniques like chronopotentiometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy that were used to understand the behavior of the zinc bromide cells at a particular flow rate of 166.7cm3 min−1 required to give good fluidization of the anode
    corecore