1,718 research outputs found

    Online Optimization of Smoothed Piecewise Constant Functions

    Get PDF
    We study online optimization of smoothed piecewise constant functions over the domain [0, 1). This is motivated by the problem of adaptively picking parameters of learning algorithms as in the recently introduced framework by Gupta and Roughgarden (2016). Majority of the machine learning literature has focused on Lipschitz-continuous functions or functions with bounded gradients. 1 This is with good reason---any learning algorithm suffers linear regret even against piecewise constant functions that are chosen adversarially, arguably the simplest of non-Lipschitz continuous functions. The smoothed setting we consider is inspired by the seminal work of Spielman and Teng (2004) and the recent work of Gupta and Roughgarden---in this setting, the sequence of functions may be chosen by an adversary, however, with some uncertainty in the location of discontinuities. We give algorithms that achieve sublinear regret in the full information and bandit settings

    A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface

    Full text link
    Given a graph GG cellularly embedded on a surface Σ\Sigma of genus gg, a cut graph is a subgraph of GG such that cutting Σ\Sigma along GG yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε>0\varepsilon >0, we show how to compute a (1+ε)(1+ \varepsilon) approximation of the shortest cut graph in time f(ε,g)n3f(\varepsilon, g)n^3. Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Ru\'e, Sau and Thilikos, which may be of independent interest

    Shear induced normal stress differences in aqueous foams

    Full text link
    A finite simple shear deformation of an elastic solid induces unequal normal stresses. This nonlinear phenomenon, known as the Poynting effect, is governed by a universal relation between shear strain and first normal stresses difference, valid for non-dissipative elastic materials. We provide the first experimental evidence that an analog of the Poynting effect exists in aqueous foams where besides the elastic stress, there are significant viscous or plastic stresses. These results are interpreted in the framework of a constitutive model, derived from a physical description of foam rheology

    Investigation of shear banding in three-dimensional foams

    Get PDF
    We study the steady flow properties of different three-dimensional aqueous foams in a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance Imaging techniques and from viscosity bifurcation experiments, we find that these foams do not exhibit any observable signature of shear banding. This contrasts with two previous results (Rodts et al., Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66 (2002) 051305); we discuss possible reasons for this dicrepancy. Moreover, the foams we studied undergo steady flow for shear rates well below the critical shear rate recently predicted (Denkov et al., Phys. Rev. Lett., 103 (2009) 118302). Local measurements of the constitutive law finally show that these foams behave as simple Herschel-Bulkley yield stress fluids

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/ϵc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    The Bane of Low-Dimensionality Clustering

    Get PDF
    In this paper, we give a conditional lower bound of nΩ(k)n^{\Omega(k)} on running time for the classic k-median and k-means clustering objectives (where n is the size of the input), even in low-dimensional Euclidean space of dimension four, assuming the Exponential Time Hypothesis (ETH). We also consider k-median (and k-means) with penalties where each point need not be assigned to a center, in which case it must pay a penalty, and extend our lower bound to at least three-dimensional Euclidean space. This stands in stark contrast to many other geometric problems such as the traveling salesman problem, or computing an independent set of unit spheres. While these problems benefit from the so-called (limited) blessing of dimensionality, as they can be solved in time nO(k11/d)n^{O(k^{1-1/d})} or 2n11/d2^{n^{1-1/d}} in d dimensions, our work shows that widely-used clustering objectives have a lower bound of nΩ(k)n^{\Omega(k)}, even in dimension four. We complete the picture by considering the two-dimensional case: we show that there is no algorithm that solves the penalized version in time less than no(k)n^{o(\sqrt{k})}, and provide a matching upper bound of nO(k)n^{O(\sqrt{k})}. The main tool we use to establish these lower bounds is the placement of points on the moment curve, which takes its inspiration from constructions of point sets yielding Delaunay complexes of high complexity
    corecore