10 research outputs found

    Crop Updates 2010 - Farming Systems

    Get PDF
    This session covers twenty papers from different authors: Pests and Disease 1. Preserving phosphine for use in Grain Storage Industry, Christopher R Newman, Department of Agriculture and Food Farming Systems Research 2. Demonstrating the benefits of grazing canola in Western Australia, Jonathan England, Stephen Gherardi and Mohammad Amjad, Department of Agriculture and Food 3. Buloke barley yield when pasture-cropped across subtropical perennial pastures, David Ferris, Department of Agriculture and Food, Phil Ward and Roger Lawes, CSIRO 4. Is pasture cropping viable in WA? Grower perceptions and EverCrop initiatives to evaluate, David Ferris, Tim Wiley, Perry Dolling, Department of Agriculture and Food, Philip Barrett-Lennard, Evergreen farming 5. Best-bet management for dual-purpose canola, John Kirkegaard, Susan Sprague, Hugh Dove and Walter Kelman, CSIRO, Canberra, Peter Hamblin, Agritech Research, Young, NSW 6. Pasture in cropping systems – with and without sheep, Brad Nutt and Angelo Loi, Department of Agriculture and Food 7. Can technology substitute for a lupin break? Wayne Parker, Department of Agriculture and Food 8. Canola row spacing with and without long term stubble retention on a sandy clay loam at Merredin, Glen Riethmuller, Department of Agriculture and Food 9. Impact of stubble retention on water balance and crop yield, Phil Ward1, Ken Flower2,3, Neil Cordingley2 and Shayne Micin1, 1CSIRO, Wembley, Western Australia, 2Western Australian No-Till Farmers Association, 3University of Western Australia Analysis and Modelling 10. Using POAMA rainfall forecasts for crop management in South-West WA, Senthold Asseng1, Peter McIntosh2,3, Mike Pook2,3, James Risbey2,3, Guomin Wang3, Oscar Alves3, Ian Foster4, Imma Farre4 and Nirav Khimashia1, 1CSIRO Plant Industry, Perth, 2CSIRO Marine and Atmospheric Research, Hobart, 3Centre for Australian Weather and Climate Research (CAWCR), A partnership between the Australian Bureau of Meteorology and CSIRO, Melbourne, 4Department of Agriculture and Food 11. Adaption to changing climates and variability – results of the Agribusiness Changing Climates regional workshop, Anderson W3, Beard D3, Blake J3, Grieve R1, Lang M3, Lemon J3, McTaggart R3, Gray D3, Price M2 and Stephens D3, 1Roderick Grieve Farm Management Consultants, 2Coffey International P/L, 3Department of Agriculture and Food 12. Farmers’ management of seasonal variability and climate change in WA, DA Beard, DM Gray, P Carmody, Department of Agriculture and Food 13. Is there a value in having a frost forecast for wheat in South-West WA? Imma Farre1, Senthold Asseng2, Ian Foster1 and Doug Abrecht3, 1Department of Agriculture and Food, CSIRO, Floreat, 2CSIRO Plant Industry, Perth 3Department of Agriculture and Food, Centre for Cropping Systems 14. Does buying rainfall pay? Greg Kirk, Planfarm Agricultural Consultants 15. Which region in the WA wheatbelt makes best use of rainfall? Peter Rowe, Bankwest Agribusiness 16. POAMA – the Predictive Ocean-Atmosphere Model for Australia, Guomin Wang and Oscar Alves, Centre for Australian Weather and Climate Research (CAWCR), A partnership between the Australian Bureau of Meteorology and CSIRO, Melbourne 17. Exploring the link between water use efficiency and farm profitability, Cameron Weeks, Planfarm and Peter Tozer, PRT Consulting Precision Agriculture 18. A plethora of paddock information is available – how does it stack up? Derk Bakker, Department of Agriculture and Food 18. Variable rate prescription mapping for lime inputs based on electromagnetic surveying and deep soil testing, Frank D’Emden, Quenten Knight and Luke Marquis, Precision Agronomics, Australia 19. Trial design and analysis using precision agriculture and farmer’s equipment, Roger Lawes, CSIRO Sustainable Ecosystems, Centre for Environment and Life Sciences, Floreat 20. Farmer perspectives of precision agriculture in Western Australia: Issues and the way forward, Dr Roger Mandel, Curtin Universit

    Spinal Cord Stimulation

    Full text link

    High-Frequency Impulse Therapy for Treatment of Chronic Back Pain: A Multicenter Randomized Controlled Pilot Study.

    No full text
    PurposeThis study aims to examine high-frequency impulse therapy (HFIT) impact on pain and function among patients undergoing care for chronic low back pain (CLBP).MethodsA pilot randomized-controlled trial of HFIT system versus sham was conducted across 5 orthopedic and pain center sites in California, USA. Thirty-six patients seeking clinical care for CLBP were randomized. Primary outcome was function measured by the Six Minute Walk Test (6MWT). Secondary outcomes were function (Timed Up and Go [TUG] and Oswestry Disability Index [ODI]), pain (Numerical Rating Scale [NRS]), quality of life (Patient Global Impression of Change [PGIC]), and device use. Patients were assessed at baseline and every week for 4 weeks of follow-up. Mann-Whitney U-test was used to analyze changes in each outcome. Repeated measures ANOVA was used to assess the effect of treatment over time.ResultsThe average age of subjects was 53.9 ± 15.7 (mean ± SD) years, with 12.1 ± 8.8 years of chronic low back pain. Patients who received an HFIT device had a significantly higher 6MWT score at weeks 2 [Cohen's d (95% CI): 0.33 (0.02, 0.61)], 3 [0.32 (0.01, 0.59)] and 4 [0.31 (0.01, 0.60)], respectively, as compared to their baseline scores (p < 0.05). Patients in the treatment group had significantly lower TUG scores at week 3 [0.30 (0.04, 0.57)] and significantly lower NRS scores at weeks 2 [0.34 (0.02, 0.58)] and 4 [0.41 (0.10, 0.67)] (p < 0.05).ConclusionA larger-scale RCT can build on the findings of this study to test whether HFIT is effective in reducing pain and improving function in CLBP patients. This study shows encouraging evidence of functional improvement and reduction in pain in subjects who used HFIT. The efficacy and minimally invasive nature of HFIT is anticipated to substantially improve the management of CLBP patients

    Low Copper and High Manganese Levels in Prion Protein Plaques

    Get PDF
    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system
    corecore