565 research outputs found

    Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities

    Get PDF
    We prove existence of weak solutions for a diffuse interface model for the flow of two viscous incompressible Newtonian fluids in a bounded domain in two and three space dimensions. In contrast to previous works, we study a new model recently developed by Abels, Garcke, and Gr\"un for fluids with different densities, which leads to a solenoidal velocity field. The model is given by a non-homogeneous Navier-Stokes system with a modified convective term coupled to a Cahn-Hilliard system. The density of the mixture depends on an order parameter.Comment: 33 page

    Coercivity and stability results for an extended Navier-Stokes system

    Full text link
    In this article we study a system of equations that is known to {\em extend} Navier-Stokes dynamics in a well-posed manner to velocity fields that are not necessarily divergence-free. Our aim is to contribute to an understanding of the role of divergence and pressure in developing energy estimates capable of controlling the nonlinear terms. We address questions of global existence and stability in bounded domains with no-slip boundary conditions. Even in two space dimensions, global existence is open in general, and remains so, primarily due to the lack of a self-contained L2L^2 energy estimate. However, through use of new H1H^1 coercivity estimates for the linear equations, we establish a number of global existence and stability results, including results for small divergence and a time-discrete scheme. We also prove global existence in 2D for any initial data, provided sufficient divergence damping is included.Comment: 29 pages, no figure

    Drei Sonderbestattungen von der Ehrenbürg bei Forchheim (Oberfranken)

    Get PDF

    Expansion in SL_d(Z/qZ), q arbitrary

    Full text link
    Let S be a fixed finite symmetric subset of SL_d(Z), and assume that it generates a Zariski-dense subgroup G. We show that the Cayley graphs of pi_q(G) with respect to the generating set pi_q(S) form a family of expanders, where pi_q is the projection map Z->Z/qZ

    The Baum-Connes Conjecture via Localisation of Categories

    Get PDF
    We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this more general setting

    Maximal regularity for non-autonomous equations with measurable dependence on time

    Get PDF
    In this paper we study maximal LpL^p-regularity for evolution equations with time-dependent operators AA. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the LpL^p-boundedness of a class of vector-valued singular integrals which does not rely on H\"ormander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of mm-th order elliptic operators AA with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an Lp(Lq)L^p(L^q)-theory for such equations for p,q(1,)p,q\in (1, \infty). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication in Potential Analysi
    corecore