81 research outputs found

    Modelo para la previsión de riesgos en la gestión de cuencas a medio plazo: SIMRISK

    Get PDF
    Presentación realizada para el Taller de trabajo sobre "Uso de predicciones climáticas estacionales para la mejora de la gestión de los embalses" celebrado en la sede central de AEMET el día 6 de octubre de 2015. Este Taller de trabajo ha sido organizado conjuntamente por la Dirección General del Agua, el proyecto del 7º Programa Marco de la Unión Europea EUPORIAS, y AEMET

    Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin

    Full text link
    [EN] The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertakenAvilés-Añazco, A.; Celleri, R.; Solera Solera, A.; Paredes Arquiola, J. (2016). Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin. Water. 8(2). doi:10.3390/w8020037S8

    Contribution of decision support systems to water management improvement in basins with high evaporation in Mediterranean climates

    Full text link
    [EN] The entry into force of Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 established a new model for the management and protection of surface water and groundwater in Europe. In this sense, a thorough knowledge of the basins is an essential step in achieving this European objective. The utility of integrative decision support systems (DSS) for decision-making in complex systems and multiple objectives allows decision-makers to identify characteristics and improve water management in a basin. In this research, hydrological and water management resource models have been combined, with the assistance of the DSS AQUATOOL, with the aim of deepening the consideration of losses by evaporation of reservoirs for a better design of the basin management rules. The case study treated is an Andalusian basin of the Atlantic zone (Spain). At the same time, different management strategies are analysed based on the optimization of the available resources by means of the conjunctive use of surface water and groundwater.The study was performed with the support of the Ecological Transition Ministry, through the Biodiversity Foundation.Ruíz-Ortíz, V.; García-López, S.; Solera Solera, A.; Paredes Arquiola, J. (2019). Contribution of decision support systems to water management improvement in basins with high evaporation in Mediterranean climates. Hydrology Research. 50(4):1020-1036. https://doi.org/10.2166/nh.2019.014S10201036504Alcamo J. , HenrichT. & RoschT.2000World Water in 2025 – Global Modelling and Scenario Analysis for the World Commission on Water for the 21st Century. Report A0002, Centre for Environmental System Research, University of Kassel, Germany.ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247Allen R. G. , PereiraL. S., RaesD. & SmithM.2006Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper 56). Food and Agricultural Organization of the United Nations, Rome, Italy. http://www.fao.org/docrep/009/x0490s/x0490s00.htm (accessed 10 September 2018).Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu J. , SoleraA., CapillaJ. & FerrerJ.2007Modelo SIMGES de simulación de la gestión de recursos hídricos, incluyendo utilización conjunta. Versión 3.03.01. Manual de usuario (Model SIMGES simulation of water resources management, including conjunctive use. 3.03.01 version. User Manual). Polytechnic University of Valencia, Valencia, Spain.Condon, L. E., & Maxwell, R. M. (2013). Implementation of a linear optimization water allocation algorithm into a fully integrated physical hydrology model. Advances in Water Resources, 60, 135-147. doi:10.1016/j.advwatres.2013.07.012EC (European Commission) 2012 A Blueprint to Safeguard Europe's Water Resources. European Commission, 14.11.2012 COM (2012) 673 final, Brussels, Belgium.González-Zeas D. 2012 Impacto del cambio climático sobre los usos del agua en Europa (Impact of Climate Change on Water Uses in Europe). PhD thesis, University of Madrid, Madrid, Spain.Junta de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. 2016Plan Hidrológico del Guadalete Barbate (2015–2021) (Hydrological Plan of the Guadalete Barbate 2015–2021). http://www.juntadeandalucia.es (accessed 25 May 2018).Li, P., Qian, H., & Wu, J. (2018). Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. International Journal of Water Resources Development, 34(3), 337-353. doi:10.1080/07900627.2018.1443059Paredes, J., Andreu, J., & Solera, A. (2010). A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Science of The Total Environment, 408(12), 2576-2589. doi:10.1016/j.scitotenv.2010.02.037Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Tabari, M. M. R., & Soltani, J. (2012). Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models. Water Resources Management, 27(1), 37-53. doi:10.1007/s11269-012-0153-7Singh, A. (2013). Irrigation Planning and Management Through Optimization Modelling. Water Resources Management, 28(1), 1-14. doi:10.1007/s11269-013-0469-ySingh, A. (2014). Conjunctive use of water resources for sustainable irrigated agriculture. Journal of Hydrology, 519, 1688-1697. doi:10.1016/j.jhydrol.2014.09.049Singh, A. (2014). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23-29. doi:10.1016/j.agwat.2014.04.003Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, 10(1), 52-67. doi:10.1007/s10040-001-0170-8Strosser P. , RoussardJ. & GrandmouginB.2007EU Water Saving Potential. ENV.D.2/ETU/2007/0001r. Final Report. 247. http://ec.europa.eu (accessed 2 July 2018).Hassan, S. M. T., Lubczynski, M. W., Niswonger, R. G., & Su, Z. (2014). Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach. Journal of Hydrology, 517, 390-410. doi:10.1016/j.jhydrol.2014.05.02

    Variations in the Patterns of Precipitation in the Watershed of the Ambato River Associated with the Eruptive Process of the Tungurahua Volcano in Ecuador

    Full text link
    The Tungurahua, located in the Cordillera de los Andes, is the volcano with the most eruptive activity in Ecuador nowadays. 1993 records the eruptive initial process and in August of 1999, after almost 80 years of rest, the volcano begins an explosive eruptive period. This research examines the effects of the eruptive process of the volcano in the patterns of change in precipitation in the short term in a hydrographic watershed. Their results are intended to contribute to the studies carried out to understand the weather and the factors influencing its variability at local and global level. It aims also to contribute with technical data in the debate about experimenting with artificial volcanoes to weather modification. The analysis demonstrates a process of redistribution of rainfall, with significant increases in rainfall from 42.25% on December, and significant decreases of 40.03% on September, during the presence of the eruptive process.Rios-Garcia, I.; Solera Solera, A. (2015). Variations in the Patterns of Precipitation in the Watershed of the Ambato River Associated with the Eruptive Process of the Tungurahua Volcano in Ecuador. Open Journal of Modern Hydrology. 5(4):121-139. doi:10.4236/ojmh.2015.54011S1211395

    Analysing hydropower production in stressed river basins within the SEEA-W approach: the Jucar River case

    Full text link
    [EN] Hydropower generation represents an important contribution to meeting the challenges of today's increasing world energy needs. It uses about 44% of water in Europe, and it is the main user of water in most OECD countries. However, in most cases, the energy sector is not a water consumer. The largest part of these withdrawals is immediately returned into the environment, being able to be used by other sectors, which is its most prominent characteristic. In order to understand the water-energy nexus and the challenges that the environment and other water users face, the European Commission proposed the use of water accounts in order to measure the influence of each water user, infrastructure and management decision to the total economic value of water resources in a given basin. In this sense, the SEEA-W is the most well-known approach of hybrid accounting as it provides a standard approach to compare results between different regions. This research analyses hydropower production in the Jucar River Basin (Spain), which is currently water-stressed by consumptive demands, within the SEEA-W approach. The results demonstrate that the SEEA-W approach needs some improvement in order to represent hydropower production properly.We would also like to express our gratitude to the Jucar River Basin Authority - Confederacion Hidrografica del Jucar (Spanish Ministry of Agriculture, Food and Environment) for providing data to develop this study. The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the NUTEGES project (CGL2012-34978) and ERAS project (CTM2016-77804-P). We also value the support provided by the European Community's Seventh Framework Program in financing the projects ENHANCE (FP7-ENV-2012, 308438), AGUAMOD (Interreg V-B Sudoe 2016), SWICCA (ECMRWF-Copernicus-FA 2015/C3S_441-LOT1/SMHI) and IMPREX (H2020-WATER-2014-2015, 641811).Solera Solera, A.; Pedro Monzonis, M.; Andreu Álvarez, J.; Estrela Monreal, T. (2018). Analysing hydropower production in stressed river basins within the SEEA-W approach: the Jucar River case. Hydrology Research. 49(2):528-538. https://doi.org/10.2166/nh.2017.278S528538492Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xDimova, G., Tzanov, E., Ninov, P., Ribarova, I., & Kossida, M. (2014). Complementary Use of the WEAP Model to Underpin the Development of SEEAW Physical Water Use and Supply Tables. Procedia Engineering, 70, 563-572. doi:10.1016/j.proeng.2014.02.062Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:10.1016/s1364-0321(99)00011-8Estrela, T., Pérez-Martin, M. A., & Vargas, E. (2012). Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57(6), 1154-1167. doi:10.1080/02626667.2012.702213Lehner, B., Czisch, G., & Vassolo, S. (2005). The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy, 33(7), 839-855. doi:10.1016/j.enpol.2003.10.018Molden, D., & Sakthivadivel, R. (1999). Water Accounting to Assess Use and Productivity of Water. International Journal of Water Resources Development, 15(1-2), 55-71. doi:10.1080/07900629948934Monteiro, C., Ramirez-Rosado, I. J., & Fernandez-Jimenez, L. A. (2014). Short-term forecasting model for aggregated regional hydropower generation. Energy Conversion and Management, 88, 231-238. doi:10.1016/j.enconman.2014.08.017Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Pedro-Monzonís, M., Solera, A., Ferrer, J., Andreu, J., & Estrela, T. (2016). Water accounting for stressed river basins based on water resources management models. Science of The Total Environment, 565, 181-190. doi:10.1016/j.scitotenv.2016.04.161Pellicer-Martínez, F., & Martínez-Paz, J. M. (2016). Grey water footprint assessment at the river basin level: Accounting method and case study in the Segura River Basin, Spain. Ecological Indicators, 60, 1173-1183. doi:10.1016/j.ecolind.2015.08.032Pereira-Cardenal, S. J., Madsen, H., Arnbjerg-Nielsen, K., Riegels, N., Jensen, R., Mo, B., … Bauer-Gottwein, P. (2014). Assessing climate change impacts on the Iberian power system using a coupled water-power model. Climatic Change, 126(3-4), 351-364. doi:10.1007/s10584-014-1221-1Pérez-Martín, M. A., Estrela, T., Andreu, J., & Ferrer, J. (2014). Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resources Management, 28(12), 4337-4358. doi:10.1007/s11269-014-0755-3Scherer, L., & Pfister, S. (2016). Global water footprint assessment of hydropower. Renewable Energy, 99, 711-720. doi:10.1016/j.renene.2016.07.02

    Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain)

    Full text link
    Añadir el siguiente texto en el campo descripción: "This is an Accepted Manuscript of an article published in Hydrological Sciences Journal on 31-Mar-2020, available online: http://www.tandfonline.com/10.1080/02626667.2020.1734812."[EN] Water indicators and indices are useful tools to assess river basin performance, that is, to measure whether the basin operates satisfactorily under a wide range of possible future demands and hydrological conditions. Spanish regulations assess the performance of water demands by using reliability indicators (RIs), established by law in 2008. This article raises the possibility of updating RIs by comparing them with sustainability indicators (SIs). SIs are widely used for the assessment of river basin performance and several policy scenarios. We applied a water allocation model to the Guadiana River basin in Spain to compare indicators under three scenarios. The study was framed within the science of socio-hydrology, combining the physical environment of a water system with its influence on social aspects. SIs gave better results than RIs when comparing future scenarios. We also propose the introduction of a vulnerability indicator into Spanish regulations.The authors thank the Spanish Research Agency (MINECO) for the financial support to the ERAS project [CTM2016-77804-P], including EU-FEDER funds. Additionally, we value the support provided by the European Community in financing the project IMPREX [H2020-WATER-2014-2015, 641811].Palop-Donat, C.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2020). Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain). Hydrological Sciences Journal. 1-15. https://doi.org/10.1080/02626667.2020.1734812S115Aguilera, H., Castaño, S., Moreno, L., Jiménez-Hernández, M. E., & de la Losa, A. (2013). Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water–groundwater interactions. Hydrogeology Journal, 21(3), 623-641. doi:10.1007/s10040-012-0950-3Alarcón, J., Garrido, A., & Juana, L. (2016). Modernization of irrigation systems in Spain: review and analysis for decision making. International Journal of Water Resources Development, 32(3), 442-458. doi:10.1080/07900627.2015.1123142Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAshofteh, P.-S., Rajaee, T., & Golfam, P. (2017). Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs). Water Resources Management, 31(12), 3723-3744. doi:10.1007/s11269-017-1701-yBOE (Boletín Oficial del Estado), 2008. ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE. 229 de 22 de septiembre 2008, 38472–38582. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-15340.BOE (Boletín Oficial del Estado), 2010. Protocolo de Revision del Convenio Sobre Cooperación Para La Protección y el Aprovechamiento Sostenible de Las Aguas de las Cuencas Hidrográficas Hispano-Portuguesas y el Protocolo adicional. Albufeira, Portugal, 30 de Noviembre de 1998. BOE. 14, de 16 de enero de 2010, 3425–3432CEDEX (Centro de Estudios y Experimentación de Obras Públicas), 2011. Evaluación del Impacto del Cambio Climático en los recursos hídricos en régimen natural. Encomienda de gestión de la Dirección General del Agua (MARM) para el estudio del cambio climático en los recursos hídricos y las masas de agua. Madrid, Spain: Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento.Collet, L., Ruelland, D., Estupina, V. B., Dezetter, A., & Servat, E. (2015). Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment. Science of The Total Environment, 536, 589-602. doi:10.1016/j.scitotenv.2015.07.093Official Journal of the European Communities. (1984). Analytical Proceedings, 21(6), 196. doi:10.1039/ap9842100196Estrada Lorenzo, F., 1993. La garantía en los sistemas de explotación de recursos hidráulicos. Thesis (PhD). Universidad Politécnica de Madrid.García-Santos, G., de Brito, M. M., Höllermann, B., Taft, L., Almoradie, A., & Evers, M. (2018). Methodology to explore emergent behaviours of the interactions between water resources and ecosystem under a pluralistic approach. Proceedings of the International Association of Hydrological Sciences, 379, 83-87. doi:10.5194/piahs-379-83-2018Gheisi, A., Forsyth, M., & Naser, G. (2016). Water Distribution Systems Reliability: A Review of Research Literature. Journal of Water Resources Planning and Management, 142(11), 04016047. doi:10.1061/(asce)wr.1943-5452.0000690Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413-1434. doi:10.1007/s11269-017-1575-zGoharian, E., Burian, S. J., & Karamouz, M. (2018). Using Joint Probability Distribution of Reliability and Vulnerability to Develop a Water System Performance Index. Journal of Water Resources Planning and Management, 144(2), 04017081. doi:10.1061/(asce)wr.1943-5452.0000869Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/wr018i001p00014Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213(2018). Water and Environment Journal, 32(1). doi:10.1111/wej.2018.32.issue-1Lall, U., & Miller, C. W. (1988). An optimization model for screening multipurpose reservoir systems. Water Resources Research, 24(7), 953-968. doi:10.1029/wr024i007p00953LOUCKS, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42(4), 513-530. doi:10.1080/02626669709492051Loucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. doi:10.1007/978-3-319-44234-1Milano, M., Reynard, E., Köplin, N., & Weingartner, R. (2015). Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress. Science of The Total Environment, 536, 12-24. doi:10.1016/j.scitotenv.2015.07.049Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250Pedro Monzonís, M., 2014. Análisis de metodologías de balances hídricos en sistemas complejos en el contexto europeo de la Planificación hidrológica. Aplicación a la cuenca del Júcar. Thesis (MS). Universitat Politècnica de València.Pedro-Monzonís, M., 2016. Assessment of water exploitation indexes based on water accounting. Thesis (PhD). Universitat Politècnica de València.Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003Ruiz Pulpón, Á. R. (2006). Regadíos y gestión sostenible de los recursos hídricos en la cuenca del Guadiana: propuesta territorial previa a la toma de decisiones. Investigaciones Geográficas, (40), 183. doi:10.14198/ingeo2006.40.09Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381-390. doi:10.1061/(asce)wr.1943-5452.0000134Sarang, A., Vahedi, A., & Shamsai, A. (2007). How to Quantify Sustainable Development: A Risk-Based Approach to Water Quality Management. Environmental Management, 41(2), 200-220. doi:10.1007/s00267-007-9047-5Shilling, F. and Shilling, F., 2014. California Water Sustainability Indicators Framework : Assessment at State and Region Scales Final Report California Water Sustainability Indicators Framework : Assessment at State and Region Scale. California, USA: California Department of Water Resources.Sivapalan, M. (2018). From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology and Earth System Sciences, 22(3), 1665-1693. doi:10.5194/hess-22-1665-2018Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., … Rodríguez‐Iturbe, I. (2014). Socio‐hydrology: Use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2(4), 225-230. doi:10.1002/2013ef000164Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270-1276. doi:10.1002/hyp.8426Srdjevic, Z., & Srdjevic, B. (2017). An Extension of the Sustainability Index Definition in Water Resources Planning and Management. Water Resources Management, 31(5), 1695-1712. doi:10.1007/s11269-017-1609-6Troy, T. J., Pavao-Zuckerman, M., & Evans, T. P. (2015). Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resources Research, 51(6), 4806-4814. doi:10.1002/2015wr017046Xu, L., Gober, P., Wheater, H. S., & Kajikawa, Y. (2018). Reframing socio-hydrological research to include a social science perspective. Journal of Hydrology, 563, 76-83. doi:10.1016/j.jhydrol.2018.05.061Yustres, Á., Navarro, V., Asensio, L., Candel, M., & García, B. (2013). Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeology Journal, 21(5), 1129-1146. doi:10.1007/s10040-013-0987-

    Water Quantity and Quality Models Applied to the Jucar River Basin, Spain

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/ 10.1007/s11269-010-9578-z ”.Traditionally, water quality modelling has focused on modelling individual water bodies. However, water quality management problems must be analyzed at the basin scale. European Water Framework Directive (WFD) requires introducing physical, chemical and biological aspects into the management of water resources systems. Water quality modelling at a basin scale presents the advantage of incorporating in a dynamic way the relationships between the different elements and water bodies. Currently, there are few tools to deal with water modelling of water quality and management at the basin scale. This paper presents the development of a water quantity model and a water quality model for a very complex water resources system: the JA(0)car River Basin (Spain). The basin is characterized by a high degree of use of the water and by many water problems related to point and diffuse pollution, on top of a complex water quantity management of the basin. To deal with this problem, SIMGES (water allocation) and GESCAL (water quality) basin scale models have been used. Both are part of the Decision Support System AQUATOOL, one of the main instruments used in Spain in order to analyze water quantity and quality aspects of water resources systems for the compliance with WFD, as shown for the case of study.This study was supported by funds from Jucar River Basin Agency (Spanish Ministry of Environment), from the Spanish Ministry of Education and Culture (project "Desarrollo de elementos de un sistema soporte de decision para la gestion de recursos hidricos", HID1999-0656), and from the European Union (project "SEDEMED-Secheresse et Desertification dans les bassins mediterranees", ref. 2002-024.4-1084).Paredes Arquiola, J.; Andreu Álvarez, J.; Martín Monerris, M.; Solera Solera, A. (2010). Water Quantity and Quality Models Applied to the Jucar River Basin, Spain. Water Resources Management. 24(11):2759-2779. doi:10.1007/s11269-010-9578-zS275927792411Andreu J, Capilla J (1993) Optimization and simulation models applied to the Segura water resources system. In: Marco J, Harboe R, Salas JD (eds) Stochastic hydrology in water resources systems: simulation and optimization. Kluwer, DordrechtAndreu J, Capilla J, Ferrer J (1992) Modelo Simges de simulación de la gestión de esquemas de recursos hídricos, incluyendo utilización conjunta. Serv. Publ. UPV, ValenciaAndreu J, Capilla J, Sanchis E (1996) AQUATOOL: a generalized decision support-system for water-resources planning and operational management. J Hydrol 177:269–291Andreu J, Solera A, Paredes J, Pérez MA, Pulido M (2008) Decision support tools for policy making in European Water Research Day (Zaragoza). European CommunitiesArnold U, Orlob GT (1989) Decision support for estuarine water quality management. J Water Resour Plan Manage, ASCE 115(6):775–792Bhakdisongkhram T, Koottated S, Towprayoon S (2007) A water model for water and environmental management at Mae Moh area in Thailand. Water Resour Manag 21:1535–1552CHJ (1998) Plan Hidrológico de la Cuenca del Júcar. Confederación Hidrográfica del Júcar. Ministerio de Medio Ambiente, Spainde Azevedo LGT, Gates TK, Fontane DG, Labadie JW, Porto RL (2000) Integration of water quantity and quality in strategic river basin planning. J Water Resour Plan Manage ASCE 126(2):85–97EC (2000) Directive 2000/60/EC of the European Parliament and of the Council, of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Commission, L 327/1, 22.12.2000Edinger JE, Geyer JC (1965) Heat exchange in the environment. Department of Sanitary engineering and Water resources, Research Project No. 49. John Hopkins University, BaltimoreFord CR, Fulkerson DR (1962) Flow in networks. Princeton University Press, Princeton, p 194Huang GH, Xia J (2001) Barriers to sustainable water-quality management. J Environ Manag 61(1):1–23Koch H, Grünewald U (2009) A comparison of modelling systems for the development and revision of water resources management plans. Water Resour Manag 23:1403–1422Kotti ME, Vlessidis AG, Thanasoulias NC, Evmiridis NP (2005) Assessment of river water quality in Northwestern Greece. Water Resour Manag 19(1):77–94Letcher R, Croke B, Jakeman A (2007) Integrated assessment modelling for water resources allocation and management: a generalised conceptual framework. Environ Model Softw 22(5):733–742. doi: 10.1016/j.envsoft.2005.12.014Loucks DP, van Beek E (2005) Water resources systems planning and management—an introduction to methods, models and applications. UNESCO, ParisParedes J, Lund J (2006) Refill and drawdown rules for parallel reservoirs: quantity and quality. Water Resour Manag 20:359–376Paredes J, Andreu J, Solera A (2007) Manual del programa Gescal de la simulación de la calidad del agua. Universidad Politécnica de Valencia, ValenciaQin XS, Huang GH (2009) An inexact change-constrained quadratic programming model for stream water quality management. Water Resour Manag 23:661–695Strzepek K, García L, Over T (1989) MITSIM 2.1 river basin simulation model, user manual. Center for Advanced Decision Support for Water and Environmental Systems, University of Colorado, Bouldervan Gils JAG, Argiropoulos D (2004) Axios river basin water quality management. Water Resour Manag 5(3–4):271–280Zhang W, Wang Y, Peng H, Li Y, Tang J, Wu B (2009) A coupled water quantity–quality model for water allocation analysis. Water Resour Manag. doi: 10.1007/s11269-009-9456-

    Assessing the effects of environmental flows on water quality for urban supply

    Get PDF
    [EN] This paper analyses the effects of environmental flows on water quality within a highly regulated basin, focusing on the Turia River basin in the eastern Iberian peninsula. Through water management and water quality models, a series of simulations were conducted, introducing variations in the outflows of the Loriguilla reservoir to evaluate the effects of different environmental flow scenarios on water quality, particularly at the location of the intake for the water supply to Valencia. Three environmental flow scenarios were analyzed, alongside an alternative management scenario, considering their implications on water quality and reliability of water demand. The findings of this paper, particularly the nitrate (NO3-) concentration evolution, highlight the influence of minimum e-flow and e-flow regimes on water quality within the basin. These results suggest that while modifying the current flow regime can lead to some improvements in nitrate concentrations at the Valencia supply intake point, the primary cause of high nitrate concentrations is attributed to irrigation return flow and the pre-existing contamination of the aquifer. This analysis offers valuable insights into the complexities of water quality management in regulated basins, emphasizing the need for a multi-faceted approach to address the diverse factors influencing water quality and demand supply reliability.This work was carried out in the framework of a PAID-06-23 project, which is funded by the Vice-Rectorate for Research of the Polytechnic University of Valencia (UPV), and the AGREEMAR project (PCI2022-133001), which is funded by PRIMA and the Spanish Research Agency. The third author of the paper was partly funded by the Spanish Ministry of Science and Innovation through Juan de la Cierva-Incorporación program (IJC2019-038848-I).Ghannem, S.; Paredes Arquiola, J.; Bergillos, RJ.; Solera Solera, A.; Andreu Álvarez, J. (2024). Assessing the effects of environmental flows on water quality for urban supply. Water. 16(11). https://doi.org/10.3390/w16111509161

    Risk assessment in water resources planning under climate change at the Júcar River basin

    Full text link
    [EN] Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This study responds to the need for an effective method to integrate climate change projections into water planning and management analysis in order to guide the decision-making, taking into account drought risk assessments. Therefore, this document presents a general and adaptive methodology based on a modeling chain and correction processes, whose main outcomes are the impacts on future natural inflows, a drought risk indicator, and the simulation of future water storage in the water resources system (WRS). This method was applied in the Jucar River basin (JRB) due to its complexity and the multiannual drought events it suffers recurrently. The results showed a worrying decrease in future inflows, as well as a high probability (approximate to 80%) of being under 50% of total capacity of the WRS in the near future. However, the uncertainty of the results was considerable from the mid-century onwards, indicating that the skill of climate projections needs to be improved in order to obtain more reliable results. Consequently, this paper also highlights the difficulties of developing this type of method, taking partial decisions to adapt them as far as possible to the basin in an attempt to obtain clearer conclusions on climate change impact assessments. Despite the high uncertainty, the results of the JRB call for action and the tool developed can be considered as a feasible and robust method to facilitate and support decision-making in complex basins for future water planning and management.This research has been supported by IMproving PRedictions and management of hydrological EXtremes (IMPREX) (grant no. 641811), Service for Water Indicators in Climate Change Adaptation (SWICCA) (grant no. ECMRWF-CopernicusFA 2015/C3S_441-LOT1/SMHI), Estimacion del Riesgo Ambiental frente a las Sequias y el cambio climatico (ERAS) (grant no. CTM2016-77804-P), and Time scale reduction on water resources and environmental planning (RESPHIRA) (grant no. PID2019-106322RB-100).Suárez-Almiñana, S.; Solera Solera, A.; Madrigal, J.; Andreu Álvarez, J.; Paredes Arquiola, J. (2020). Risk assessment in water resources planning under climate change at the Júcar River basin. HYDROLOGY AND EARTH SYSTEM SCIENCES. 24(11):5297-5315. https://doi.org/10.5194/hess-24-5297-2020S529753152411Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996.Andreu, J., Solera, A., Capilla, J., and Polo, J.: Modelo SIMGES de Simulación de la Gestión de Recursos Hídricos, incluyendo Utilización Conjunta, Manual de usuario, versión 3.03.01, Universitat Politècnica de València, Valencia, Spain, 2007.Andreu, J., Ferrer-Polo, J., Pérez, M. A., and Solera, A.: Decision support system for drought planning and management in the Jucar river basin, Spain, in: Proceedings of the 18th world IMACS/MODSIM Congress, 13–17 July 2009, Cairns, Australia, 3223–3229, 2009.Barranco, L., Dimas, M., Jiménez, A., and Estrada, F.: Nueva evaluación del impacto futuro del cambio climático en los recursos hídricos en España, Ingeiría Civ., 191/2008, 34–55, 2018.Bergström, S.: The HBV Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995.CEDEX: Estudio de los impactos del cambio climático en los recursos hídricos y las masas de agua, Ficha 1: Evaluación del impacto del cambio climático en los recursos hídricos en régimen natural, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-407-1-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2010.CEDEX: Evaluación del impacto del cambio climático en los recursos hídricos y sequías en España, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-415-0-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2017.Chatterjee, S., Daniels, M. D., Sheshukov, A. Y., and Gao, J.: Projected climate change impacts on hydrologic flow regimes in the Great Plains of Kansas, River Res. Appl., 34, 195–206, https://doi.org/10.1002/rra.3249, 2018.CHJ: Plan Hidrológico de la Demarcación Hidrográfica del Júcar, Memoria cliclo de planificación hidrológica 2015–2021, Ministerio de Agricultura, Alimentación y Medio Ambiente, Valencia, Spain, 2015.CHJ: Plan Especial de Sequía Demarcación Hidrográfica del Júcar, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Valencia, Spain, 2018.Collados-Lara, A. J., Pulido-Velazquez, D., and Pardo-Igúzquiza, E.: An integrated statistical method to generate potential future climate scenarios to analyse droughts, Water, 10, 1224, https://doi.org/10.3390/w10091224, 2018.Cook, B. I., Miller, R. L., and Seager, R.: Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL033486, 2008.Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.Espadafor, M., Lorite, I. J., Gavilán, P., and Berengena, J.: An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain, Agr. Water Manage., 98, 1045–1061, https://doi.org/10.1016/j.agwat.2011.01.015, 2011.Folton, N., Martin, E., Arnaud, P., L'Hermite, P., and Tolsa, M.: A 50-year analysis of hydrological trends and processes in a Mediterranean catchment, Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, 2019.García-Romero, L., Paredes-Arquiola, J., Solera, A., Belda, E., Andreu, J., and Sánchez-Quispe, S. T.: Optimization of the multi-start strategy of a direct-search algorithm for the calibration of different rainfall-runoff models for the water resources assessment, Water, 11, 1876, https://doi.org/10.3390/w11091876, 2019.Grillakis, M. G., Koutroulis, A. G., Daliakopoulos, I. N., and Tsanis, I. K.: A method to preserve trends in quantile mapping bias correction of climate modeled temperature, Earth Syst. Dynam., 8, 889–900, https://doi.org/10.5194/esd-8-889-2017, 2017.Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, 1999.Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1, 96–99, 1985.Haro-Monteagudo, D.: Methodology for the optimal management design of water resources system under hydrologic uncertainty, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 373 pp., 2014.Haro-Monteagudo, D., Solera, A., and Andreu, J.: Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain), J. Hydrol., 544, 36–45, https://doi.org/10.1016/j.jhydrol.2016.11.022, 2017.Hernández Bedolla, J., Solera, A., Paredes Arquiola, J., and Roblero Escobar, C. X.: Análisis del cambio en las aportaciones hidrológicas en la cuenca del río Júcar a partir de 1980 y sus causas, Ing. del agua, 23, 141–155, https://doi.org/10.4995/ia.2019.10582, 2019.Herrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016.Hewitt, C., Buontempo, C., and Newton, P.: Using Climate Predictions to Better Serve Society's Needs, Eos Trans. AGU, 94, 105–107, https://doi.org/10.1002/2013EO110002, 2013.Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A regional parameter estimation scheme for a pan-European multi-basin model, J. Hydrol. Reg. Stud., 6, 90–111, https://doi.org/10.1016/j.ejrh.2016.04.002, 2016.IPCC: Summary for Policymakers, Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://doi.org/10.1017/CBO9781107415324, 2014.Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G.: Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks, J. Environ. Qual., 39, 1429–1440, https://doi.org/10.2134/jeq2009.0441, 2010.Lemos, M. C. and Rood, R. B.: Climate projections and their impact on policy and practice, Wiley Interdisciplin. Rev. Clim. Change, 1, 670–682, https://doi.org/10.1002/wcc.71, 2010.Madrigal, J., Solera, A., Suárez-Almiñana, S., Paredes-Arquiola, J., Andreu, J., and Sánchez-Quispe, S. T.: Skill assessment of a seasonal forecast model to predict drought events for water resource systems, J. Hydrol., 564, 574–587, https://doi.org/10.1016/j.jhydrol.2018.07.046, 2018.Manne, D., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: Evaluation of Bias Correction Methods for Future River Discharge Projection, J. Jpn. Soc. Civ. Eng. Ser., 72, 1–16, https://doi.org/10.2208/jscejer.72.i_7, 2017.Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Climate, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.Marcos-Garcia, P., Lopez-Nicolas, A., and Pulido-Velazquez, M.: Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin, J. Hydrol., 554, 292–305, https://doi.org/10.1016/j.jhydrol.2017.09.028, 2017.Milly, P. C. D. and Dunne, K. A.: A Hydrologic Drying Bias in Water-Resource Impact Analyses of Anthropogenic Climate Change, J. Am. Water Resour. Assoc., 53, 822–838, https://doi.org/10.1111/1752-1688.12538, 2017.Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith., T. L.: Model evaluation guidelines for systematic quantifi cation of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007.Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff, Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, 2013.Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models: Part 1. A discussion of principles, J. Hydrol., 10, 282–290, 1970.Naustdalslid, J.: Climate change – The challenge of translating scientific knowledge into action, Int. J. Sustain. Dev. World Ecol., 18, 243–252, https://doi.org/10.1080/13504509.2011.572303, 2011.Ochoa-Rivera, J. C.: Modelo Estocástico de Redes Neuronales para la Síntesis de Caudales Aplicados a la Gestión Probabilística de Sequías, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2002.Ochoa-Rivera, J. C.: Prospecting droughts with stochastic artificial neural networks, J. Hydrol., 352, 174–180, https://doi.org/10.1016/j.jhydrol.2008.01.006, 2008.Paredes-Arquiola, J., Solera, A., Andreu, J., and Lerma, N.: Manual técnico de la herramienta EVALHID para la evaluación de recursos hídricos, Universitat Politècnica de València, Valencia, Spain, 2012.Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., and Jiménez-Gavilán, P.: The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW), J. Hydrol., 533, 1–14, https://doi.org/10.1016/j.jhydrol.2015.11.034, 2016.Pérez-Martín, M., Thurston, W., Estrela, T., and del Amo, P.: Cambio en las series hidrológicas de los últimos 30 años y sus causas. El efecto 80, in: III Jornadas de Ingeniería del Agua (JIA 2013). La Protección Contra Los Riesgos Hídricos, 23–24 October 2013, Valencia, Spain, 527–534, 2013.Sánchez-Quispe, S., Andreu, J., and Solera, A.: Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2001.Seager, R., Burgman, R., Kushnir, Y., Clement, A., Cook, E., Naik, N., and Miller, J.: Tropical pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs, J. Climate, 21, 6175–6190, https://doi.org/10.1175/2008JCLI2170.1, 2008.Stagl, J. C. and Hattermann, F. F.: Impacts of climate change on the hydrological regime of the danube river and its tributaries using an ensemble of climate scenarios, Water, 7, 6139–6172, https://doi.org/10.3390/w8120566, 2015.Stagl, J. C. and Hattermann, F. F.: Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries, Water, 8, 566, https://doi.org/10.3390/w8120566, 2016.Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., and Solera, A.: Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management, Sci. Total Environ., 603–604, 126–139, https://doi.org/10.1016/j.scitotenv.2017.05.259, 2017.Suárez-Almiñana, S., Solera, A., Andreu, J., and García-Romero, L.: Uncertainty analysis of climate projections in relation to historical contributions in the Júcar River Basin, Ing. del agua, 24, 89–99, https://doi.org/10.4995/Ia.2020.12149, 2020.Switanek, B. M., Troch, A. P., Castro, L. C., Leuprecht, A., Chang, H. I., Mukherjee, R., and Demaria, M. C. E.: Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013.Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Slingo, J. M., Brown, S., and Belcher, S. E.: High risk of unprecedented UK rainfall in the current climate, Nat. Commun., 8, 1–6, https://doi.org/10.1038/s41467-017-00275-3, 2017.van den Hurk, B. J. J. M., Bouwer, L. M., Buontempo, C., Döscher, R., Ercin, E., Hananel, C., Hunink, J. E., Kjellström, E., Klein, B., Manez, M., Pappenberger, F., Pouget, L., Ramos, M. H., Ward, P. J., Weerts, A. H., and Wijngaard, J. B.: Improving predictions and management of hydrological extremes through climate services, Clim. Serv., 1, 6–11, https://doi.org/10.1016/j.cliser.2016.01.001, 2016.van den Hurk, B., Hewitt, C., Jacob, D., Bessembinder, J., Doblas-Reyes, F., and Döscher, R.: The match between climate services demands and Earth System Models supplies, Clim. Serv., 12, 59–63, https://doi.org/10.1016/j.cliser.2018.11.002, 2018.Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015.Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, R package version 0.4-0, Zenodo, https://doi.org/10.5281/zenodo.839854, 2020

    Herramienta de ayuda a la toma de decisiones en la gestión de los embalses utilizando predicciones estacionales, basada en el modelo SIMRISK de previsión de riesgos en la gestión de cuencas a medio plazo

    Get PDF
    Presentación realizada para el Taller de trabajo sobre "Uso de predicciones climáticas estacionales para la mejora de la gestión de los embalses" celebrado en AEMET el día 10 de noviembre de 2016. El evento ha sido organizado de forma conjunta por la Dirección General del Agua, AEMET y CETaqua, dentro de las actividades del proyecto del 7º Programa Marco de la Unión Europea EUPORIAS. El taller ha tenido como finalidad presentar y practicar con las herramientas desarrolladas en el caso de estudio de aplicación de predicciones climáticas estacionales para la gestión de los embalses
    corecore