43 research outputs found

    Compact Dielectric Resonator Antenna with Band-Notched Characteristics for Ultra-Wideband Applications.

    Get PDF
    yesIn this paper, a compact dielectric resonator antenna (DRA) with band-notched characteristics for ultra-wideband applications is presented. A comprehensive parametric study was carried out using CST Microwave Studio Suite TM 2011 to analyze and optimize the characteristics of the proposed antenna. Three shapes for the coupling slot were investigated. Simulation results show that the proposed DRA had a −10 dB impedance bandwidth of 23% from 9.97 GHz to 12.558 GHz, and a maximum gain of 7.23 dBi. The antenna had a notched band centered at 10.57 GHz, which increased the reflection coefficient by 23.5 dB, and reduced the gain by 6.12 dB. The optimized designs were verified by experimental tests on fabricated samples

    Aperture-Coupled Asymmetric Dielectric Resonators Antenna for Wideband Applications

    Get PDF
    yesA compact dielectric resonator antenna (DRA) for wideband applications is proposed. Two cylindrical dielectric resonators which are asymmetrically located with respect to the center of a rectangular coupling aperture are fed through this aperture. By optimizing the design parameters, an impedance bandwidth of about 29%, covering the frequency range from 9.62 GHz to 12.9 GHz, and a gain of 8 dBi are obtained. Design details of the proposed antenna and the results of both simulation and experiment are presented and discussed

    Dual Segment S-Shaped Aperture-Coupled Cylindrical Dielectric Resonator Antenna for X-Band Applications.

    Get PDF
    yesA new low-cost dual-segmented dielectric resonator (DR) antenna design is proposed for wideband applications in the X-band region. Two DRs coupled to an S-shaped slot introduce interesting features. The antenna performance was characterized in terms of the reflection coefficient, gain, and radiation pattern, and detailed simulation studies indicate excellent antenna performance from 7.66 GHz to 11.2 GHz (37.5% fractional bandwidth) with a maximum gain of 6.0 dBi at 10.6 GHz while the fabricated prototype has a matched bandwidth from 7.8 GHz to 11.85 GHz (41% fractional bandwidth) and maximum gain of 6dBi. The antenna is compact, size 1 x 0.83 x 0.327 time the wavelength at 10 GHz. The two DR segments may be located on the same side or on opposite sides of the substrate, giving respectively improved gain or more uniform field patterns. Experimental testing of the prototype performance showed reasonable agreement with the predicted performance

    Design of Frequency Reconfigurable Multiband Compact Antenna using two PIN diodes for WLAN/WiMAX Applications

    Get PDF
    YesIn this paper, we present a simple reconfigurable multiband antenna with two PIN diode switches for WiMAX/WLAN applications. The antenna permits reconfigurable switching in up to ten frequency bands between 2.2 GHz and 6 GHz, with relative impedance bandwidths of around 2.5% and 8%. The proposed antenna has been simulated using CST microwave studio software and fabricated on an FR-4 substrate. It is compact, with an area of 50 × 45 mm2, and has a slotted ground substrate. Both measured and simulated return loss characteristics of the optimized antenna show that it satisfies the requirement of 2.4/5.8 GHz WLAN and 3.5 GHz WiMAX antenna applications. Moreover, there is good agreement between the measured and simulated result in terms of radiation pattern and gain.Engineering and Physical Science Research Council through Grant EP/E022936A

    The Design of a Uniplanar Printed Triple Band-Rejected UWB Antenna using Particle Swarm Optimization and the Firefly Algorithm

    Get PDF
    YesA compact planar monopole antenna is proposed for ultra-wideband applications. The antenna has a microstrip line feed and band-rejected characteristics and consists of a ring patch and partial ground plane with a defective ground structure of rectangular shape. An annular strip is etched above the radiating element and two slots, one C-shaped and one arc-shaped, are embedded in the radiating patch. The proposed antenna has been optimized using bio-inspired algorithms, namely Particle Swarm Optimization and the Firefly Algorithm, based on a new software algorithm (Antenna Optimizer). Multi-objective optimization achieves rejection bands at 3.3 to 3.7 GHz for WiMAX, 5.15 to 5.825 GHz for the 802.11a WLAN system or HIPERLAN/2, and 7.25 to 7.745 GHz for C-band satellite communication systems. Validated results show wideband performance from 2.7 to 10.6 GHz with S11 ˂ -10 dB. The antenna has compact dimensions of 28 × 30 mm2. The radiation pattern is comparatively stable across the operating band with a relatively stable gain except in the notched bands.This work was supported in part by the United Kingdom Engineering and Physical Science Research Council (EPSRC) under Grant EP/E022936A, TSB UK under grant application KTP008734 and the Iraqi Ministry of Higher Education and Scientific Research

    Balanced dual-segment cylindrical dielectric resonator antennas for ultra-wideband applications.

    Get PDF
    yesIn this paper, balanced dual segment cylindrical dielectric antennas (CDRA) with ultra wide-band operation are reported. First a T-shaped slot and L-shaped microstrip feeding line are suggested to furnish a balanced coupling mechanism for feeding two DRAs. Performance of the proposed antenna was analyzed and optimized against the target frequency band. The proposed antenna was then modified by adding a C-shaped strip to increase the gain. The performances of both balanced antennas were characterized and optimized in terms of antenna reflection coefficient, radiation pattern, and gain. The antennas cover the frequency range from 6.4 GHz to 11.736 GHz, which is 58.7% bandwidth. A maximum gain of 2.66 dB was achieved at a frequency of 7 GHz with the first antenna, with a further 2.25 dB increase in maximum gain attained by adding the C-shaped strip. For validation, prototypes of the two antennas were fabricated and tested. The predicted and measured results showed reasonable agreement and the results confirmed good impedance bandwidth characteristics for ultra-wideband operation from both proposed balanced antennas
    corecore