109 research outputs found

    Profil pengekspresan gen mengekod delta 6 dan delta 12-asid lemak desaturase Cunninghamella bainieri semasa biosintesis asid gamma-linolenik

    Get PDF
    Delta 6-asid lemak desaturase dan delta 12-asid lemak desaturase merupakan enzim yang diperlukan bagi langkah desaturasi semasa proses biosintesis asid gamma-linolenik (GLA) oleh kulat oleaginus. Objektif kajian ini ialah untuk menganalisis profil pengekspresan gen mengekod enzim delta 6-asid lemak desaturase (des6) dan delta 12-asid lemak desaturase (des12) kulat oleaginus Cunninghamella bainieri semasa penghasilan GLA. Jujukan gen separa bersaiz 1372 pb bagi des6 dan 1008 pb bagi des12 telah dipencil daripada C. bainieri. Analisis pengekspresan gen menggunakan kaedah tindak balas berantai polimerase kuantitatif masa sebenar (RT-qPCR) menunjukkan perubahan kadar pengekspresan des6 adalah lebih tinggi berbanding kadar pengekspresan des12 semasa penghasilan GLA. Pengekspresan des6 adalah tertinggi selepas 24 jam dikultur dalam medium penghasilan GLA. Namun, kadar pengekspresannya menurun hingga jam ke-96 pertumbuhan tetapi meningkat semula pada jam ke-120. Bagi des12, kadar pengekspresannya adalah lebih sekata dengan pengekspresan tertinggi dikesan pada jam ke-120. Analisis penghasilan GLA menunjukkan jumlah GLA dalam sel berkolerasi dengan kadar pengekspresan des6. Hasil kajian mencadangkan bahawa aras pengekspresan des6 adalah penting dalam menentukan aras GLA dalam C. bainieri

    Effect of Various Cultivation Methods on Cellobiohydrolase Production from Aspergillus niger

    Get PDF
    Three different cultivation methods, i.e., shaking-flask culture (SFC), static surface liquid culture (SSLC) and membrane surface liquid culture (MSLC) were used to cultivate the filamentous fungi,  Aspergillus niger PY11 in order to differentiate its behaviours by different cultivation methods using the same media, by determination of growth profile during fermentation. The dry cell weight, protein concentration, cellobiohydrolase (CBH) activity and residual sugar concentration in SSLC and MSLC were 1.5 to 2-folds than that by SFC. Cultivation of A. niger using MSLC was higher than SSLC with maximum biomass concentration, protein concentration and enzyme activity were 0.93 g dry weight/ml medium, 3.49 mg/ml and 36.99 U/ml respectively. MSLC possess the best growth characteristics and was the best cultivation method in production of CBH from A. niger PY11

    Inactivation of the Catalytic Subunit of cAMP-Dependent Protein Kinase A Causes Delayed Appressorium Formation and Reduced Pathogenicity of Colletotrichum gloeosporioides

    Get PDF
    The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides

    Cloning, heterologous expression and characterisation of a recombinant cellobiohydrolase from Humicola insolens ATCC16454 in Pichia pastoris

    Get PDF
    A cellobiohydrolase gene from the thermophilic fungus Humicola insolens ATCC 16454 was expressed in the methylotrophic yeast Pichia pastoris X-33, and the biochemical properties of the recombinant protein were characterised. The full-length cDNA of the cellobiohydrolase gene avi2 was cloned into the P. pastoris expression vector pPICZαC and expressed extracellularly as a recombinant cellobiohydrolase protein with a molecular weight of approximately 52.3 kDa. The purified recombinant Avi2 enzyme displayed an optimal activity at 50°C and was found stable between temperatures of 30°C and 60°C. The optimal pH of the enzyme was pH 5.0. More than 80% of the enzyme activity was retained at pH values ranging from pH3.0 to pH9.0. Recombinant Avi2 enzyme showed its highest activity towards the substrates Avicel (0.075 U mg-1) and Sigmacell-cellulose (0.018 U mg-1). Very low or undetectable hydrolysis was observed with cellobiose and filter paper. Metal ions, such as Mn2+, Co2+, and Ba2+, increased the activity of the recombinant enzyme. Manganese ions caused the highest increase in activity of approximately 1.38-fold compared to the control assay. Other ions such as Pd2+, Cu2+, Zn2+, Fe2+, and SDS, however, inhibited Avi2 enzyme activity. Interestingly, this recombinant enzyme showed high pH stability when it was incubated in either acidic or basic solutions

    Functional Analysis of an Appressorium-Specific Gene from Colletotrichum gloeosporioides

    Get PDF
    A novel gene (CAS2) specifically expressed during appressorium formation was isolated from Colletotrichum gloeosporioides using Differential Display RT-PCR. CAS2 comprises 368 deduced amino acid residues and is 50% identical to a hypothetical protein from Chaetomium globosum. ProtFun 2.2 server analysis predicted that Cas2 functions as a transport and binding protein. Based on putative transmembrane domain prediction software (HMMTOP), Cas2 protein is composed of five alpha-helical transmembrane domains with a very short external N-terminus tail and long internal C-terminus. ExPASy ScanProsite analysis showed the presence of integrin beta chain cysteine-rich domain, N-myristoylation site, EGF-like domain, 2Fe-2S ferredoxins, iron-sulfur binding region, VWFC domain, fungal hydrophobins signature, membrane lipoprotein lipid attachment site, and Janus-faced atracotoxin (J-ACTX) family signature in CAS2 protein. Mutants with deleted CAS2 were not significantly different in terms of vegetative growth, conidiation, and appressoria production compared to wild type. However, the Cas2 mutant produced multipolar germination, a feature which distinguishes it from wild type strain. Interestingly, the mutant is non-virulent to mango fruits, indicating that CAS2 may encode proteins that function as novel virulence factors in fungal pathogens

    Characterization of Inducible HSP70 Genes in an Antarctic Yeast, Glaciozyma antarctica PI12, in Response to Thermal Stress

    Get PDF
    The induction of highly conserved heat shock protein 70 (HSP70) is often related to a cellular response due to harmful stress or adverse life conditions. In this study, we determined the expression of Hsp70 genes in the Antarctic yeast, Glaciozyma antarctica, under different several thermal treatments for several exposure periods. The main aims of the present study were (1) to determine if stress-induced Hsp70 could be used to monitor the exposure of the yeast species G. antarctica to various types of thermal stress; (2) to analyze the structures of the G. antarctica HSP70 proteins using comparative modeling; and (3) to evaluate the relationship between the function and structure of HSP70 in G. antarctica. In this study, we managed to amplify and clone 2 Hsp70 genes from G. antarctica named GaHsp70-1 and GaHsp70-2. The cells of G. antarctica expressed significantly inducible Hsp70 genes after the heat and cold shock treatments. Interestingly, GaHsp70-1 showed 2–6-fold higher expression than GaHsp70-2 after the heat and cold exposure. ATP hydrolysis analysis on both G. antarctica HSP70s proved that these psychrophilic chaperones can perform activities in a wide range of temperatures, such as at 37, 25, 15, and 4 ◦C. The 3D structures of both HSP70s revealed several interesting findings, such as the substitution of a β-sheet to loop in the N-terminal ATPase binding domain and some modest residue substitutions, which gave the proteins the flexibility to function at low temperatures and retain their functional activity at ambient temperatures. In conclusion, both analyzed HSP70s played important roles in the physiological adaptation of G. antarctica
    corecore