5 research outputs found

    Discovery, observations, and modelling of a new eclipsing polar: MASTER OT J061451.70-272535.5

    Get PDF
    We report the discovery of a new eclipsing polar, MASTER OT J061451.70-272535.5, detected as an optical transient by MASTER auto-detection software at the recently commissioned MASTER-SAAO telescope. Time resolved (10-20 s) photometry with the SAAO 1.9-m and 1.0-m telescopes, utilizing the SHOC EM-CCD cameras, revealed that the source eclipses, with a period of 2.08 h (7482.9 +/- 3.5 s). The eclipse light curve has a peculiar morphology, comprising an initial dip, where the source brightness drops to 50 percent of the pre-eclipse level before gradually increasing again in brightness. A second rapid ingress follows, where the brightness drops by 60-80 per cent, followed by a more gradual decrease to zero flux. We interpret the eclipse profile as the result of an initial obscuration of the accretion hot-spot on the magnetic white dwarf by the accretion stream, followed by an eclipse of both the hot-spot and partially illuminated stream by the red dwarf donor star. This is similar to what has been observed in other eclipsing polars such as HU Aqr, but here the stream absorption is more pronounced. The object was subsequently observed with South African Large Telescope (SALT) using the Robert Stobie Spectrograph (RSS). This revealed a spectrum with all of the Balmer lines in emission, a strong He II 4686 angstrom line with a peak flux greater than that of H beta, as well as weaker He I lines. The spectral features, along with the structure of the light curve, suggest MASTER OT J061451.70-272535.5 is a new magnetic cataclysmic variable, most likely of the synchronized Polar subclass

    Proper-motion age dating of the progeny of Nova Scorpii AD 1437.

    Get PDF
    'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions
    corecore