17 research outputs found
Cross-Sectional Associations of Reallocating Time Between Sedentary and Active Behaviours on Cardiometabolic Risk Factors in Young People: An International Children's Accelerometry Database (ICAD) Analysis.
INTRODUCTION: Sedentary time and time spent in various intensity-specific physical activity are co-dependent, and increasing time spent in one behaviour requires decreased time in another. OBJECTIVE: The aim of the present study was to examine the theoretical associations with reallocating time between categories of intensities and cardiometabolic risk factors in a large and heterogeneous sample of children and adolescents. METHODS: We analysed pooled data from 13 studies comprising 18,200 children and adolescents aged 4-18 years from the International Children's Accelerometry Database (ICAD). Waist-mounted accelerometers measured sedentary time, light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA). Cardiometabolic risk factors included waist circumference (WC), systolic blood pressure (SBP), fasting high- and low-density lipoprotein cholesterol (HDL-C and LDL-C), triglycerides, insulin, and glucose. Associations of reallocating time between the various intensity categories with cardiometabolic risk factors were explored using isotemporal substitution modelling. RESULTS: Replacing 10 min of sedentary time with 10 min of MVPA showed favourable associations with WC, SBP, LDL-C, insulin, triglycerides, and glucose; the greatest magnitude was observed for insulin (reduction of 2-4%), WC (reduction of 0.5-1%), and triglycerides (1-2%). In addition, replacing 10 min of sedentary time with an equal amount of LPA showed beneficial associations with WC, although only in adolescents. CONCLUSIONS: Replacing sedentary time and/or LPA with MVPA in children and adolescents is favourably associated with most markers of cardiometabolic risk. Efforts aimed at replacing sedentary time with active behaviours, particularly those of at least moderate intensity, appear to be an effective strategy to reduce cardiometabolic risk in young people
Restoring capability of friction pendulum seismic isolation systems
The restoring (or re-centring) capability is an important feature of any isolation system and a fundamental requirement of current standards and guideline specifications for the design of seismically isolated structures. In this paper, the restoring capability of spherical sliding isolation systems, often referred to as friction pendulum systems (FPSs), is investigated through an extensive parametric study involving thousands of non-linear response history analyses of SDOF systems. The dynamic behavior of the isolation system is described with the visco-plastic model of Constantinou et al. (J Struct Eng 116(2):455–474, 1990), considering the variability of the friction coefficient with sliding velocity and contact pressure. Numerical analyses have been carried out using a set of approximately three hundred natural seismic ground motions recorded during different earthquakes and differing in seismic intensity, frequency content characteristics, magnitude, epicentral distance and soil characteristics. Regression analysis has been performed to derive the dependency of the residual displacement from the parameters governing the dynamic response of FPS. The influence of near-fault earthquakes and the accumulation of residual displacements due to real sequences of seismic ground motions have been also investigated. Finally, the restoring compliance criteria proposed in this study are compared to the lateral restoring force requirements of current seismic codes. Based on the results of this study, useful recommendations for a (more) rational design of FPSs are outlined