36 research outputs found
The effect of particulate strengthening on microstructure and mechanical characterization of binary-modified composites on mild steel
This article presents the microstructure, tribological behavior, and hardness properties of the Zn-TiO2 functional
composite coating produced using electrolytic co-deposition technique. The 7.0–13.0 weight fractions of Ti particles
were incorporated in a Zn bath to form Zn-TiO2 alloy in the presence of other additives. The microstructural properties
of the fabricated coating were investigated using a scanning electron microscope equipped with an energy-dispersive
spectroscope, X-ray diffraction, and an atomic force microscope. The anticorrosion behavior in 3.65% NaCl medium was studied using potentiodynamic polarization technique and characterized using high-resolution optical microscope. The
hardness and wear properties of the coated alloys were measured with high diamond microhardness tester and
reciprocating sliding tester, respectively. From the results, the increases in hardness and wear resistance are attributed to the formation of the incorporated particulate and uniform precipitation of the metal grains at the metal lattice. The contribution of TiO2 particles especially with Zn-13Ti-0.3 V-S provides new orientation of metal–matrix-modified coated structure and decrease in friction coefficient. The anticorrosion resistance characteristics were found to improve significantly in response to concentration of additive
Performance comparison of hydraulic and gravitation HybridICE filters in freeze desalination of mine waters
HybridICE is an emerging freeze desalination technology for treating complex mine wastewaters. The technology works on the principle that growing ice crystals reject impurities during freezing. The bottleneck in the freeze desalination processes may be the separation of ice from the ice slurry generated in the freeze engine. Two types of HybridICE filter have been developed to effect ice separation from ice slurry. The two types differ in the design of the filter elements, mode of feeding the slurry into the filter, and the mechanism of separation of ice from the slurry. In both types of filter, an extruded continuous ice column is formed around the filtering element, which has some openings to allow excess concentrated process water to flow out of the filter. However, the driving force in the gravitation filter is buoyancy, while in the hydraulic filter the ice column is driven by the pressure generated from the flow of the slurry. Salt removal and ice yield from each of the filter types was evaluated when a solution of approximately 4% m/m NaCl solution, prepared by dissolving 25.1 kg of NaCl in 674 litres of water, was treated in a HybridICE freeze crystallisation pilot plant. The objective was to describe the operation of the two types of filter and compare their performance. Salt removal and ice yield were found to be higher with the gravitation filter than the hydraulic filter.Keywords: freeze, desalination, filter, yield, salt removal, ic
Surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel
Surface enhancement of engineering materials is
necessary for preventing service failure and corrosion attacks
industrially. The surface modification, strengthening effect
and electrochemical comparative study of Zn-Al2O3-CeO3
and Zn-TiO2-CeO3 coating on mild steel was investigated.
Deposition was performed to obtain a better surface adherent
coating using the electrodeposition technique. Co-deposition
of mild steel resulted into surface modification attributes to
the complex alloys that were developed. Films of mild steel
were electrodeposited on zinc electrodes using the chloride
bath solutions. The effect of deposition potentials was systematically
studied using a focus ion beam scanning electron
microscope (FIB-SEM) and an atomic force microscope
(AFM) to observe the surface morphology, topography and
the surface adherent properties of the coatings. The elemental
composition and the phases evolved in composite coatings were measured by means of the energy dispersed
spectrometer (EDS). The microhardness measurements and
corrosion behaviours of the deposits were investigated.
Weight loss measurement was conducted on the plated samples
to observe the rate of corrosion and it was observed that
there was severe corrosion on the controlled sample in comparison
to the plated samples and that Zn-TiO2-CeO3
resisted more corrosion attacks
Corrosion Resistance of AA6063-Type Al-Mg-Si Alloy by Silicon Carbide in Sodium Chloride Solution for Marine Application
The present work focused on corrosion inhibition of
AA6063 type Al-Mg-Si alloy in sodium chloride (NaCl) solution
with a silicon carbide inhibitor, using the potentiodynamic
electrochemical method. The aluminium alloy surface morphology
was examined, in the as-received and as-corroded in the
un-inhibited state, with scanning electron microscopy equipped
with energy dispersive spectroscopy (SEM-EDS). The results
obtained via linear polarization indicated a high corrosion potential
for the unprotected as-received alloy. Equally, inhibition efficiency
as high as 98.82% at 10.0 g/v silicon carbide addition was obtained
with increased polarization resistance (Rp), while the current
density reduced significantly for inhibited samples compared to the
un-inhibited aluminium alloy. The adsorption mechanism of the
inhibitor aluminium alloy follows the Langmuir adsorption
isotherm. This shows that the corrosion rate of aluminium alloy
with silicon carbide in NaCl environment decreased significantly
with addition of the inhibito
Effect of WO3 Nanoparticle Loading on the Microstructural, Mechanical and Corrosion Resistance of Zn Matrix/TiO2-WO3 Nanocomposite Coatings for Marine Application
In this study, for marine application purposes, we
evaluated the effect of process parameter and particle loading on
the microstructure, mechanical reinforcement and corrosion
resistance properties of a Zn-TiO2-WO3 nanocomposite produced
via electrodeposition. We characterized the morphological
properties of the composite coatings with a Scanning Electron
Microscope (SEM) equipped with an Energy Dispersive
Spectrometer (EDS). We carried out mechanical examination using
a Dura Scan hardness tester and a CERT UMT-2 multi-functional
tribological tester. We evaluated the corrosion properties by linear
polarization in 3.5% NaCl. The results show that the coatings
exhibited good stability and the quantitative particle loading greatly
enhanced the structural and morphological properties, hardness
behavior and corrosion resistance of the coatings. We observed the
precipitation of this alloy on steel is greatly influenced by the
composite characteristics
Chemical interaction, interfacial effect and the microstructural characterization of the induced zinc–aluminum–Solanum tuberosum in chloride solution on mild steel
In this study, we report the effect of Solanum tuberosum (ST) as a strong
additive on the morphological interaction, wear, and hardness properties of electroplated
zinc coating in chloride bath solutions. The structural and the mechanical
behavior of the Zn–Al–ST coating were studied and compared with the properties of
Zn coatings. Characterization of the electrodeposited coatings were carried out
using scanning electron microscopy, energy dispersive spectrometer, AFM, and
X-ray diffraction techniques. The adhesion between the coatings and substrate was
examined mechanically using hardness and wear techniques. From the results,
amorphous Zn–Al–ST coatings were effectively obtained by electrodeposition using
direct current. The coating morphology was revealed to be reliant on the bath
composition containing strong leveling additives. From all indications, ST content
contribute to a strong interfacial surface effect leading to crack-free and better
morphology, good hardness properties, and improved wear resistance due to the
precipitation of Zn2Si and Zn7Al2Si3. Hence, addition of ST is beneficial for the
structural strengthening, hardness, and wear resistance properties of such coatings
Performance Evaluation Effect of Nb2O5 Particulate on the Microstructural, Wear and Anti-corrosion Resistance of Zn–Nb2O5 Coatings on Mild Steel for Marine Application
In this study, we developed Zn–Nb2O5 composite
coatings from sulfate bath for wear and corrosion performance
on mild steel by electrodeposition technique. The
effect of Nb2O5 particulate on the Zn–Nb2O5 properties was
investigated. The particle volume fraction was varied within
between 10 and 20 wt%. The structural properties of the
composite coatings were characterized using scanning
electron microscope equipped with energy-dispersive spectrometer.
The hardness and wear of the composite coating
were measured with diamond base microhardness indenter
tester and sliding CETR reciprocating wear testers, respectively.
The corrosion properties were examined in 3.65%
NaCl using AUTOLAB 101 Metrohm potentiostat–galvanostat
with linear polarization technique. The results
showed that average hardness value of 192.6 and 200.6 HV
and passivation potential of 4.39E?08 and 5.30E?08(X)
were obtained for the 10–20 wt% Nb2O5 particulate on the
Zn–Nb2O5 coatings. The wear performance improves by
63.4% as against the control sample. In all, this study
established that up to 20 wt% of Nb2O5 in Zn–Nb2O5 composite coating significant corrosion, wear and microhardness
propagation resistance of mild steel was attained
Multifaceted incorporation of Zn-Al2O3/Cr2O3/SiO2 nanocomposite coatings: anti-corrosion, tribological, and thermal stability
Nano-sized particle incorporation into metal matrix has gained worldwide acceptance. Al2O3, Cr2O3, and SiO2 nanoparticles have been co-deposited with Zn using electrodeposition process to produce advanced alloy. The coatings were characterized using SEM/EDX and XRD. The mechanical properties of the coatings were studied using microhardness indenter and dry abrasive wear tester. Zn-10 g/L Cr2O3 nanocomposite exhibited the highest microhardness of 228 HVN; Zn-5 g/L Al2O3 nanocomposite possessed the highest corrosion resistance and lowest wear loss. Zn-5 g/L SiO2 nanocomposite showed good stability against other composite coatings. The incorporation of the Al2O3, Cr2O3, and SiO2 shows grain refinement and modify orientation on Zn matrix