64 research outputs found

    Albumin/asparaginase capsules prepared by ultrasound to retain ammonia

    Get PDF
    "Published online: 17 June 2016"Asparaginase reduces the levels of asparagine in blood, which is an essential amino acid for the proliferation of lymphoblastic malign cells. Asparaginase converts asparagine into aspartic acid and ammonia. The accumulation of ammonia in the bloodstream leads to hyperammonemia, described as one of the most significant side effects of asparaginase therapy. Therefore, there is a need for asparaginase formulations with the potential to reduce hyperammonemia. We incorporated 2 % of therapeutic enzyme in albumin-based capsules. The presence of asparaginase in the interface of bovine serum albumin (BSA) capsules showed the ability to hydrolyze the asparagine and retain the forming ammonia at the surface of the capsules. The incorporation of Poloxamer 407 in the capsule formulation further increased the ratio aspartic acid/ammonia from 1.92 to 2.46 (and 1.10 from the free enzyme), decreasing the levels of free ammonia. This capacity to retain ammonia can be due to electrostatic interactions and retention of ammonia at the surface of the capsules. The developed BSA/asparaginase capsules did not cause significant cytotoxic effect on mouse leukemic macrophage cell line RAW 264.7. The new BSA/asparaginase capsules could potentially be used in the treatment of acute lymphoblastic leukemia preventing hyperammonemia associated with acute lymphoblastic leukemia (ALL) treatment with asparaginase.Fundação para a Ciência e a Tecnologia - SFRH\BPD\98388\2013 ; UID/BIO/04469/2013 ; UID/BIA/04050/2013COMPETE 2020 (POCI-01-0145-FEDER-006684

    Nanomedicine for drug delivery in South Africa: a protocol for systematic review

    Get PDF
    Background: The emergence of nanomedicine in the past decade has changed the landscape of disease diagnosis and treatment. Nanomedicine makes use of nanostructures for applications in different fields of medicine, including drug delivery, biosensors, neuro-electronic interfaces, in vivo imaging, and cell-specific molecular interactions. Despite its relative infancy, nanomedicine has generated a significant body of research as evidenced by peer reviewed literature and several patents. This proposed systematic review will focus specifically on drug delivery systems in which nanoparticles are used to enhance the pharmacological and therapeutic properties of drugs. The strength of nanoparticulate drug delivery systems is their ability to alter the pharmacokinetics and bio-distribution of drugs. Globally, the discourse on nanomedicine is dominated by research being done in the developed countries of Europe and in the United States of America. Less attention has been given to the applications of nanomedicine in developing countries, particularly Africa. There is dearth of information on the applications of nanomedicine in terms of drug delivery with particular reference to which diseases are being targeted generally in Africa. The review will describe the specific diseases that are being targeted and the progress being made in South Africa, with a view to determining whether the applications of nanomedicine are being appropriated to address the context-specific challenges in this country or if they mimic what is being done globally. Methods: Keywords related to nanomedicine and drug delivery will be combined to build a search strategy for each of the following databases: PubMed, Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews, Cochrane Methodology Register), Google Scholar, NHS Health Technology Assessment Database and Web of Science. We will also check reference lists of included studies for other eligible reports and search unpublished data. To ensure that the search is comprehensive, grey literature will be searched extensively. Literature to be included will have nanomedicine in drug delivery as the primary application and report on the specific diseases that are targeted in South Africa. Two authors will independently screen the search output, select studies and extract data; discrepancies will be resolved by consensus and discussion. When no consensus is reached, the third author will be consulted. Discussion: The systematic review will inform the government, policy-makers, investors, health professionals, scientists, and engineers about the applications of nanomedicine in drug delivery. In particular, it will identify the diseases targeted by the application of nanomedicine for drug delivery and the progress being made in South Africa as the disease burden of this country differs from that of developed countries where nanomedicine has been widely used for drug delivery. Systematic review registration PROSPERO CRD4201705738

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged

    Application of polymeric nanoparticles in food sector

    Get PDF
    Nanotechnology presents opportunities to create new and better products. Nano technology has huge impact in many applications including food industry. Product of nanotechnology, such as polymeric nanoparticle, can be utilized to improve food quality by extending food shelf life, increase food safety, lower the cost and enhance the nutritional benefits. This chapter provides an overview of the properties of polymeric nanoparticle, preparation techniques, as well as the role polymeric nano-particles in the food industr

    Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells

    No full text
    Hadeer M Abdelaziz,1,2 Ahmed O Elzoghby,1,3–5 Maged W Helmy,1,6 Magda W Samaha,1,3 Jia-You Fang,7–9 May S Freag1,4,5,10 1Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; 2Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt; 3Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; 4Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 5Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, MA 02139, USA; 6Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt; 7Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; 8Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan; 9Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan; 10Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt Background: Lung cancer is the most common cancer and the leading cause of total deaths worldwide. Its classified into two major types including non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) based on the origin of abnormal lung cells as well as the smoking status of the patient. NSCLC is the most common and aggressive type of lung cancer representing 80%–85% of all cases. Purpose: The aim of the study was to present lyotropic liquid crystalline nanoparticles (LCNPs) as promising carriers for co-delivery of the chemotherapeutic agent, pemetrexed (PMX) and the herbal drug, resveratrol (RSV) for effective lung cancer management.Methods: The proposed PMX-RSV-LCNPs were prepared by hydrotrope method. Hydrophobic ion pairing with cetyl trimethyl ammonium bromide (CTAB) was implemented to increase the encapsulation efficiency of the hydrophilic PMX up to 95%±3.01%.Results: The tailored PMX-RSV-LCNPs exhibited a particle size of 173±0.26 nm and biphasic release pattern with a relatively initial burst release within first 3–4 hour followed by sustained release up to 24 hours. Moreover, PMX-RSV-LCNPs manifested superior concentration and time dependent cytotoxicity profile against A549 lung cancer cells with IC50 4.0628 µg/mL. Besides, the enhanced cellular uptake profile based on bioadhesive properties of glyceryl monoolein (GMO) as well as energy independent (cholesterol dependent) pattern. In-vivo evaluations against urethane induced lung cancer bearing mice demonstrated the potentiality of PMX-RSV-LCNPs in tumor growth inhibition via inhibition of angiogenesis and induction of apoptosis. The results were supported by histopathological analysis and immunohistochemical Ki67 staining. Moreover, PMX-RSV-LCNPs displayed a promising safety profile via attenuating nephro- and hepatotoxicity. Conclusion: PMX-RSV-LCNPs elaborated in the current study hold a great promise for lung cancer treatment. Keywords: hydrophobic ion pairing, liquid crystalline nanoparticles, lung cancer, glyceryl monoolein, pemetrexed, resveratro

    Squarticles as the nanoantidotes to sequester the overdosed antidepressant for detoxification

    No full text
    Chun-Han Chen,1,2,* Tse-Hung Huang,3–5,* Ahmed O Elzoghby,6,7 Pei-Wen Wang,8 Chia-Wen Chang,9 Jia-You Fang9–12 1Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, 2Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, 3Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 4School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 5School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan; 6Cancer Nanotechnology Research Laboratory (CNRL), 7Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; 8Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 9Pharmaceutics Laboratory, Graduate Institute of Natural Products, 10Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, 11Department of Anesthesiology, Chang Gung Memorial Hospital, 12Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan *These authors contributed equally to this work Abstract: The increasing death rate caused by drug overdose points to an urgent demand for the development of novel detoxification therapy. In an attempt to detoxify tricyclic antidepressant overdose, we prepared a lipid nanoemulsion, called squarticles, as the nanoantidote. Squalene was the major lipid matrix of the squarticles. Here, we present the animal study to investigate both the pharmacokinetic and pharmacodynamic effects of squarticles on amitriptyline intoxication. The anionic and cationic squarticles had average diameters of 97 and 122 nm, respectively. Through the entrapment study, squarticles could intercept 40%–50% of the amitriptyline during 2 h with low leakage after loading into the nanoparticles. The results of isothermal titration calorimetry demonstrated greater interaction of amitriptyline with the surface of anionic squarticles (Ka =28,700) than with cationic ones (Ka =5,010). Real-time imaging showed that intravenous administration of anionic squarticles resulted in a prolonged retention in the circulation. In a rat model of amitriptyline poisoning, anionic squarticles increased the plasma drug concentration by 2.5-fold. The drug uptake in the highly perfused organs was diminished after squarticle infusion, indicating the lipid sink effect of bringing the entrapped overdosed drug in the tissues back into circulation. In addition, the anionic nanosystems restored the mean arterial pressure to near normal after amitriptyline injection. The survival rate of overdosed amitriptyline increased from 25% to 75% by treatment with squarticles. Our results show that the adverse effects of amitriptyline intoxication could be mitigated by administering anionic squarticles. This lipid nanoemulsion is a potent antidote to extract amitriptyline and eliminate it. Keywords: squarticles, squalene, amitriptyline, overdose, antidote, pharmacokinetic
    corecore