211 research outputs found

    Executive function after exhaustive exercise

    Get PDF
    PurposeFindings concerning the effects of exhaustive exercise on cognitive function are somewhat equivocal. The purpose of this study was to identify physiological factors that determine executive function after exhaustive exercise.MethodsThirty-two participants completed the cognitive tasks before and after an incremental exercise until exhaustion (exercise group: N = 18) or resting period (control group N = 14). The cognitive task was a combination of a Spatial Delayed-Response (Spatial DR) task and a Go/No-Go task, which requires executive function. Cerebral oxygenation and skin blood flow were monitored during the cognitive task over the prefrontal cortex. Venous blood samples were collected before and after the exercise or resting period, and blood catecholamines, serum brain-derived neurotrophic factor, insulin-like growth hormone factor 1, and blood lactate concentrations were analyzed.ResultsIn the exercise group, exhaustive exercise did not alter reaction time (RT) in the Go/No-Go task (pre: 861 ± 299 ms vs. post: 775 ± 168 ms) and the number of error trials in the Go/No-Go task (pre: 0.9 ± 0.7 vs. post: 1.8 ± 1.8) and the Spatial DR task (pre: 0.3 ± 0.5 vs. post: 0.8 ± 1.2). However, ΔRT was negatively correlated with Δcerebral oxygenation (r = −0.64, P = 0.004). Other physiological parameters were not correlated with cognitive performance. Venous blood samples were not directly associated with cognitive function after exhaustive exercise.ConclusionThe present results suggest that recovery of regional cerebral oxygenation affects executive function after exhaustive exercise

    Slowed response to peripheral visual stimuli during strenuous exercise

    Get PDF
    Recently, we proposed that strenuous exercise impairs peripheral visual perception because visual responses to peripheral visual stimuli were slowed during strenuous exercise. However, this proposal was challenged because strenuous exercise is also likely to affect the brain network underlying motor responses. The purpose of the current study was to resolve this issue. Fourteen participants performed a visual reaction-time (RT) task at rest and while exercising at 50% (moderate) and 75% (strenuous) peak oxygen uptake. Visual stimuli were randomly presented at different distances from fixation in two task conditions: the Central condition (2° or 5° from fixation) and the Peripheral condition (30° or 50° from fixation). We defined premotor time as the time between stimulus onset and the motor response, as determined using electromyographic recordings. In the Central condition, premotor time did not change during moderate (167 ± 19 ms) and strenuous (168 ± 24 ms) exercise from that at rest (164 ± 17 ms). In the Peripheral condition, premotor time significantly increased during moderate (181 ± 18 ms, P < 0.05) and strenuous exercise (189 ± 23 ms, P < 0.001) from that at rest (173 ± 17 ms). These results suggest that increases in Premotor Time to the peripheral visual stimuli did not result from an impaired motor-response network, but rather from impaired peripheral visual perception. We conclude that slowed response to peripheral visual stimuli during strenuous exercise primarily results from impaired visual perception of the periphery

    Cognitive function during exercise under severe hypoxia

    Get PDF
    Acute exercise has been demonstrated to improve cognitive function. In contrast, severe hypoxia can impair cognitive function. Hence, cognitive function during exercise under severe hypoxia may be determined by the balance between the beneficial effects of exercise and the detrimental effects of severe hypoxia. However, the physiological factors that determine cognitive function during exercise under hypoxia remain unclear. Here, we examined the combined effects of acute exercise and severe hypoxia on cognitive function and identified physiological factors that determine cognitive function during exercise under severe hypoxia. The participants completed cognitive tasks at rest and during moderate exercise under either normoxic or severe hypoxic conditions. Peripheral oxygen saturation, cerebral oxygenation, and middle cerebral artery velocity were continuously monitored. Cerebral oxygen delivery was calculated as the product of estimated arterial oxygen content and cerebral blood flow. On average, cognitive performance improved during exercise under both normoxia and hypoxia, without sacrificing accuracy. However, under hypoxia, cognitive improvements were attenuated for individuals exhibiting a greater decrease in peripheral oxygen saturation. Cognitive performance was not associated with other physiological parameters. Taken together, the present results suggest that arterial desaturation attenuates cognitive improvements during exercise under hypoxia

    System Design of an Autonomous Underwater Robot “DaryaBird”

    Get PDF
    Various kinds of robots have been developed parallel with the progress of computers and information processing technology, and the operations in the extreme environments, such as disaster areas, space and ocean, are getting one of the practical solutions for those hazardous missions. The underwater robots are one of the extreme environment robots and expected as one of solutions for underwater activities i.e., maintenance of underwater structures, observations, scientific research, where research area is getting wide and deep and also underwater structures are getting large-scale and deep-depth. Their efficiencies have been investigated during recent decades and are proven by ocean experiments. However, the robotic system including the support vessels is still big scale, and not so easy to handle by a few researchers. In this paper, we describe the design of an underwater robot “DaryaBird” developed aiming at handy, small underwater robots which can be operated by a few researchers. In addition, experimental results and mission strategies for AUVC 2010 are reported.AUVSI & ONR\u27s 13th AUVSI 2010 : Association for Unmanned Vehicle Systems International (AUVSI) North America 2010, Aug 24-27, 2010, Denver, CO., US

    Distribution of Polysulfide in Human Biological Fluids and Their Association with Amylase and Sperm Activities

    Get PDF
    Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. In this study, we confirmed the presence of polysulfide in other biological fluids, such as semen and nasal discharge. The levels of polysulfide in these biological fluids from healthy volunteers (n = 9) with identical characteristics were compared. Additionally, the circadian rhythm of plasma polysulfide was also investigated. The polysulfide levels detected from nasal discharge and seminal fluid were approximately 400 and 600 μM, respectively. No correlation could be found between plasma polysulfide and the polysulfide levels of tear, saliva, and nasal discharge. On the other hand, seminal polysulfide was positively correlated with plasma polysulfide, and almost all polysulfide contained in semen was found in seminal fluid. Intriguingly, saliva and seminal polysulfide strongly correlated with salivary amylase and sperm activities, respectively. These results provide a foundation for scientific breakthroughs in various research areas like infertility and the digestive system process

    Electronic Health Record–Nested Reminders for Serum Lithium Level Monitoring in Patients With Mood Disorder: Randomized Controlled Trial

    Get PDF
    Background: Clinical guidelines recommend regular serum lithium monitoring every 3 to 6 months. However, in the real world, only a minority of patients receive adequate monitoring. Objective: This study aims to examine whether the use of the electronic health record (EHR)–nested reminder system for serum lithium monitoring can help achieve serum lithium concentrations within the therapeutic range for patients on lithium maintenance therapy. Methods: We conducted an unblinded, single-center, EHR-nested, parallel-group, superiority randomized controlled trial comparing EHR-nested reminders with usual care in adult patients receiving lithium maintenance therapy for mood disorders. The primary outcome was the achievement of therapeutically appropriate serum lithium levels between 0.4 and 1.0 mEq/L at 18 months after enrollment. The key secondary outcomes are included as follows: the number of serum lithium level monitoring except for the first and final monitoring; exacerbation of the mood disorder during the study period, defined by hospitalization, increase in lithium dose, addition of antipsychotic drugs or mood stabilizers, or addition or increase of antidepressants; adherence defined by the proportion of days covered by lithium carbonate prescription during the study period. Results: A total of 111 patients were enrolled in this study. A total of 56 patients were assigned to the reminder group, and 55 patients were assigned to the usual care group. At the follow-up, 38 (69.1%) patients in the reminder group and 33 (60.0%) patients in the usual care group achieved the primary outcome (odds ratio 2.14, 95% CI 0.82-5.58, P=.12). The median number of serum lithium monitoring was 2 in the reminder group and 0 in the usual care group (rate ratio 3.62; 95% CI 2.47-5.29, P<.001). The exacerbation of mood disorders occurred in 17 (31.5%) patients in the reminder group and in 16 (34.8%) patients in the usual care group (odds ratio 0.97, 95% CI 0.42-2.28, P=.95). Conclusions: We found insufficient evidence for an EHR-nested reminder to increase the achievement of therapeutic serum lithium concentrations. However, the number of monitoring increased with relatively simple and inexpensive intervention. The EHR-based reminders may be useful to improve quality of care for patients on lithium maintenance therapy, and they have potentials to be applied to other problems. Trial Registration: University Hospital Medical Information Network Clinical Trials Registry UMIN000033633; https://tinyurl.com/5n7wtya

    Fundamental Parameters of the Milky Way Galaxy Based on VLBI astrometry

    Full text link
    We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxy's structure with a set of parameters including the Galaxy center distance R_0, the angular rotation velocity at the LSR Omega_0, mean peculiar motion of the sources with respect to Galactic rotation (U_src, V_src, W_src), rotation-curve shape index, and the V component of the Solar peculiar motions V_sun. Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R_0 = 8.05 +/- 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U_src and W_src are fairly small compared to the Galactic rotation velocity, being U_src = 1.0 +/- 1.5 km/s and W_src = -1.4 +/- 1.2 km/s. Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V_src and V_sun as V_src = V_sun -19 (+/- 2) km/s, suggesting that the value of V_src is fully dependent on the adopted value of V_sun. Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Omega_0 and V_sun. We find that the angular velocity of the Sun, Omega_sun, which is defined as Omega_sun = Omega_0 + V_sun/R_0, can be well constrained with the best estimate of Omega_sun = 31.09 +/- 0.78 km/s/kpc. This corresponds to Theta_0 = 238 +/- 14 km/s if one adopts the above value of R_0 and recent determination of V_sun ~ 12 km/s.Comment: 14 pages, 6 figures, PASJ in pres
    corecore