17 research outputs found

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    Retroviral DNA integration: reaction pathway and critical intermediates

    No full text
    The key DNA cutting and joining steps of retroviral DNA integration are carried out by the viral integrase protein. Structures of the individual domains of integrase have been determined, but their organization in the active complex with viral DNA is unknown. We show that HIV-1 integrase forms stable synaptic complexes in which a tetramer of integrase is stably associated with a pair of viral DNA ends. The viral DNA is processed within these complexes, which go on to capture the target DNA and integrate the viral DNA ends. The joining of the two viral DNA ends to target DNA occurs sequentially, with a stable intermediate complex in which only one DNA end is joined. The integration product also remains stably associated with integrase and likely requires disassembly before completion of the integration process by cellular enzymes. The results define the series of stable nucleoprotein complexes that mediate retroviral DNA integration

    A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization

    Get PDF
    13 p.-6 fig.-3 tab.A novel fungal laccase produced by the ascomycete Chaetomium sp. isolated from arid soil was purified and characterized and its ability to remove dyes was determined. Extracellular laccase was purified 15-fold from the crude culture to homogeneity with an overall yield of 50% using ultrafiltration and anion-exchange chromatography. The purified enzyme was found to be a monomeric protein with a molecular mass of 68 kDa, estimated by SDS-PAGE, and with an isoelectric point of 5.5. The optimal temperature and pH value for laccase activity toward 2,6-DMP were 60 °C and 3.0, respectively. It was stable at temperatures below 50 °C and at alkaline conditions. Kinetic study showed that this laccase showed higher affinity on ABTS than on 2,6-DMP. Its activity was enhanced by the presence of several metal ions such as Mg2+, Ca2+ and Zn2+, while it was strongly inhibited by Fe2+, Ag+ and Hg2+. The novel laccase also showed high, remarkable sodium chloride tolerance. Its ability to decolorize different dyes, with or without HBT (1-hydroxy-benzotriazole), as redox mediator, suggests that this protein may be useful for different industrial applications and/or bioremediation processes.Peer reviewe
    corecore