12,274 research outputs found

    Global and local economic impacts of climate change in Syria and options for adaptation:

    Get PDF
    There is broad consensus among scientists that climate change is altering weather patterns around the world. However, economists are only beginning to develop tools that allow for the quantification of such weather changes on countries' economies and people. This paper presents a modeling suite that links the downscaling of global climate models, crop modeling, global economic modeling, and subnational-level computable equilibrium modeling. Important to note is that this approach allows for decomposing the potential global and local economic effects on countries, including various economic sectors and different household groups. We apply this modeling suite to Syria, a relevant case study given the country's location in a region that is consistently projected to be among those hit hardest by climate change. Despite a certain degree of endogenous adaptation, local impacts of climate change (through declining yields) are likely to affect Syria beyond the agricultural sector and farmers and also reduce economy-wide growth and incomes of urban households in the long term. The overall effects of global climate change (through higher food prices) are also negative, but some farmers can reap the benefit of higher prices. Combining local and global climate change scenarios shows welfare losses across all rural and urban household groups of between 1.6 – 2.8 percent annually, whereas the poorest household groups are the hardest hit. Finally, while there is some evidence that droughts may become more frequent in the future, it is clear that even without an increase in frequency, drought impacts will continue to put a significant burden on Syria's economy and people. Action to mitigate the negative effects of climate change and variability should to be taken on the global and local level. A global action plan for improving food security and better integration of climate change in national development strategies, agricultural and rural policies, and disaster risk management and social protection policies will be keys for improving the resilience of countries and people to climate change.Climate change, Development, drought, Growth, Poverty,

    Boo - Hoo - Hoo : You\u27re Gonna Cry When I\u27m Gone

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3041/thumbnail.jp

    LATE-NC staging in routine neuropathologic diagnosis: An update

    Get PDF
    An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer\u27s disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience

    Milwaukee

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2115/thumbnail.jp

    In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Get PDF
    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1–10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (i) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (ii) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (iii) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.The simulations presented in this paper utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1125915. We acknowledge the referee, Kaitlin Kratter, whose comments helped to improve this paper
    • …
    corecore