987 research outputs found

    The 3Rs of Cell Therapy

    Get PDF
    The 3Rs for a good education are “reading, 'riting, and 'rithmetic.” The basis for good health care solutions for the emergent field of cell therapy in the future will also involve 3Rs: regulation, reimbursement, and realization of value. The business models in this new field of cell therapy will involve these 3Rs. This article brings forth realities facing this new industry for its approaches to provide curative health care solutions

    A rather unconventional use of the laryngeal mask airway

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74753/1/j.1460-9592.2007.02283.x.pd

    Increased muscle tension and reduced elasticity of affected muscles in recent-onset Graves' disease caused primarily by active muscle contraction

    Get PDF
    In 3 patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia. The affected muscles were found to be very stiff when the other eye looked straight ahead. It was expected that these stiff muscles would be able to shorten to some extent but would be unable to lengthen, due to fibrosis of the muscle. We found that the affected muscles did not shorten very much when the other eye looked into the field of action of the muscle. Unexpectedly however, they lengthenend considerably when the other eye looked out of the field of action of the muscle. This finding implies that the raised muscle tension and reduced elasticity of affected muscles in these cases of Graves' disease of recent onset were primarily caused by active muscle contraction, not by fibrosis

    Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction

    Get PDF
    Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 µg/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical

    Unique Responses of Stem Cell-Derived Vascular Endothelial and Mesenchymal Cells to High Levels of Glucose

    Get PDF
    Diabetes leads to complications in selected organ systems, and vascular endothelial cell (EC) dysfunction and loss is the key initiating and perpetuating step in the development of these complications. Experimental and clinical studies have shown that hyperglycemia leads to EC dysfunction in diabetes. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. Whether these vascular stem/progenitor cells succumb to the adverse effects of high glucose remains unknown. We sought to determine whether adult vascular stem/progenitor cells display cellular activation and dysfunction upon exposure to high levels of glucose as seen in diabetic complications. Mononuclear cell fraction was prepared from adult blood and bone marrow. EPCs and MPCs were derived, characterized, and exposed to either normal glucose (5 mmol/L) or high glucose levels (25 mmol/L). We then assayed for cell activity and molecular changes following both acute and chronic exposure to high glucose. Our results show that high levels of glucose do not alter the derivation of either EPCs or MPCs. The adult blood-derived EPCs were also resistant to the effects of glucose in terms of growth. Acute exposure to high glucose levels increased caspase-3 activity in EPCs (1.4x increase) and mature ECs (2.3x increase). Interestingly, MPCs showed a transient reduction in growth upon glucose challenge. Our results also show that glucose skews the differentiation of MPCs towards the adipocyte lineage while suppressing other mesenchymal lineages. In summary, our studies show that EPCs are resistant to the effects of high levels of glucose, even following chronic exposure. The findings further show that hyperglycemia may have detrimental effects on the MPCs, causing reduced growth and altering the differentiation potential

    Human Multipotent Stromal Cells (MSCs) Increase Neurogenesis and Decrease Atrophy of the Striatum in a Transgenic Mouse Model for Huntington's Disease

    Get PDF
    Background: Implantation of human multipotent stromal cells from bone marrow (hMSCs) into the dentate gyrus of the hippocampus of mice was previously shown to stimulate proliferation, migration and neural differentiation of endogenous neural stem cells. We hypothesized that hMSCs would be beneficial in a mouse model of Huntington disease (HD) due to these neurogenic effects. Results: We implanted hMSCs into the striatum of transgenic mice (N171-82Q) that are a model for HD. The implanted hMSCs rapidly disappeared over 3 to 15 days. However, they increased proliferation and neural differentiation of endogenous neural stem cells for up to 30 days. They also increased neurotrophic signaling and decreased atrophy of the striatum in 3-month old HD mice implanted with hMSCs one month earlier. Conclusions: The results therefore suggested that neural implantation of hMSCs may be of benefit in HD but a number of parameters of dose, treatment schedule, and route of administration need to be optimized

    Adipose derived pericytes rescue fractures from a failure of healing – non-union

    Get PDF
    Atrophic non-union is attributed to biological failure of the fracture repair process. It occurs in up to 10% of fractures, results in significant morbidity to patients, and treatment often requires complex reconstructive procedures. We tested the ability of human bone derived marrow mesenchymal stem cells (MSC), and human adipose derived pericytes (the native ancestor of the MSC) delivered percutaneously to the fracture gap to prevent the formation of atrophic non-union in a rat model. At eight weeks, 80% of animals in the cell treatment groups showed evidence of bone healing compared to only 14% of those in the control group. Radiographic parameters showed significant improvement over the eight-week period in the cell treatment groups, and histology confirmed bone bridges at the fracture gap in the both treatment groups. The quality of bone produced and its biomechanical properties were significantly enhanced in both treatment groups. The results from this study demonstrate that MSC and pericytes have significant bone regeneration potential in an atrophic non-union model. These cells may have a role in the prevention of atrophic non-union and could enable a paradigm shift in the treatment of fractures at high risk of failing to heal and developing non-union

    Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-β1

    Get PDF
    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor-β1 (TGF-β1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-β1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-β1-induced protein ig-h3 (BGH3) protein levels by TGF-β1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-β1, but calponin 3 was not significantly regulated by mechanical strain or TGF-β1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-β1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-β1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation
    corecore