11 research outputs found

    Characterization of Hox genes in the bichir, Polypterus palmas

    No full text
    It has been suggested that the increase in the number of Hox genes may have been one of the key events in vertebrate evolution. Invertebrates have one Hox cluster, while mammals have four. Interestingly, the number of Hox gene clusters is greater in the teleost fishes, zebrafish and medaka, than in mouse and human. The greater number of Hox clusters in the teleosts suggests that Hox gene duplication events have occurred during the radiation of ray-finned fishes. The question is when the Hox gene duplication event(s) that lead to seven Hox clusters in the teleosts actually occurred. We have addressed this question by studying the Hox genes in the bichir, Polypterus palmas. A preliminary PCR-estimation of the number of Hox genes suggests that Polypterus has five different Hox9 cognate group genes, which may be an indication of more than four Hox clusters in the bichir

    Composite bioscaffolds incorporating decellularized ECM as a cell-instructive component within hydrogels as in vitro models and cell delivery systems

    No full text
    © Springer Science+Business Media New York 2017. Decellularized tissues represent promising biomaterials, which harness the innate capacity of the tissue-specific extracellular matrix (ECM) to direct cell functions including stem cell proliferation and lineage-specific differentiation. However, bioscaffolds derived exclusively from decellularized ECM offer limited versatility in terms of tuning biomechanical properties, as well as cell–cell and cell–ECM interactions that are important mediators of the cellular response. As an alternative approach, in the current chapter we describe methods for incorporating cryo-milled decellularized tissues as a cell-instructive component within a hydrogel carrier designed to crosslink under mild conditions. This composite strategy can enable in situ cell encapsulation with high cell viability, allowing efficient seeding with a homogeneous distribution of cells and ECM. Detailed protocols are provided for the effective decellularization of human adipose tissue and porcine auricular cartilage, as well as the cryo-milling process used to generate the ECM particles. Further, we describe methods for synthesizing methacrylated chondroitin sulphate (MCS) and for performing UV-initiated and thermally induced crosslinking to form hydrogel carriers for adipose and cartilage regeneration. The hydrogel composites offer great flexibility, and the hydrogel phase, ECM source, particle size, cell type(s) and seeding density can be tuned to promote the desired cellular response. Overall, these systems represent promising platforms for the development of tissue-specific 3-D in vitro cell culture models and in vivo cell delivery systems

    Impact of PhACs on Soil Microorganisms

    No full text
    International audienceThe use of reclaimed water in crop irrigation helps to mitigate water shortage. The fertilization of arable soils with sewage sludge, biosolids, or livestock manure reduces extensive application of synthetic fertilizers. However, both practices lead to the introduction of pharmaceutical active compounds (PhACs) in arable soil, known to host a wide range of living organisms, including microorganisms which are supporting numerous ecosystem services. In soils, the fate of PhACs is governed by different abiotic and biotic processes. Among them, soil sorption and microbial transformation are the most important ones and determine the fate, occurrence, and dispersion of PhACs into the different compartments of the environment. The presence of PhACs in soils can compromise the abundance, diversity, and activity of the soil microbial community which is one of the key players in a range of soil ecosystem services. This chapter reviews the current knowledge of the effects of PhACs, commonly found in wastewater effluents and derived organic fertilizers, on the soil microbial community
    corecore